Estimates for the Counting Function of the Laplace Operator on Domains with Rough Boundaries

Yuri Netrusov and Yuri Safarov

Abstract We present explicit estimates for the remainder in the Weyl formula for the Laplace operator on a domain \(\Omega \), which involve only the most basic characteristics of \(\Omega \) and hold under minimal assumptions about the boundary \(\partial \Omega \).

This is a survey of results obtained by the authors in the last few years. Most of them were proved or implicitly stated in our papers [10, 11, 12]; we give precise references or outline proofs wherever it is possible. The results announced in Subsection 5.2 are new.

Let \(\Omega \subset \mathbb{R}^n \) be an open bounded domain in \(\mathbb{R}^n \), and let \(-\Delta_B \) be the Laplacian on \(\Omega \) subject to the Dirichlet (\(B = D \)) or Neumann (\(B = N \)) boundary condition. Further on, we use the subscript \(B \) in the cases where the corresponding statement refers to (or result holds for) both the Dirichlet and Neumann Laplacian. Let \(N_B(\Omega, \lambda) \) be the number of eigenvalues of \(\Delta_B \) lying below \(\lambda^2 \). If the number of these eigenvalues is infinite or \(-\Delta_B \) has essential spectrum below \(\lambda^2 \), then we define \(N_N(\Omega, \lambda) := +\infty \). Let

\[
R_B(\Omega, \lambda) := N_B(\Omega, \lambda) - (2\pi)^{-n} \omega_n |\Omega| \lambda^n,
\]

where \(\omega_n \) is the volume of the \(n \)-dimensional unit ball and \(|\Omega| \) denotes the volume of \(\Omega \). According to the Weyl formula, \(R_B(\Omega, \lambda) = o(\lambda^n) \) as \(\lambda \to +\infty \). If \(B = D \), then this is true for every bounded domain \([4]\). If \(B = N \), then the Weyl formula holds only for domains with sufficiently regular boundaries. In

Yuri Netrusov
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
e-mail: y.netrusov@bristol.ac.uk

Yuri Safarov
Department of Mathematics, King’s College London, Strand, London WC2R 2LS, UK
e-mail: yuri.safarov@kcl.ac.uk

© Springer Science + Business Media, LLC 2010
the general case, R_N may well grow faster than λ^n; moreover, the Neumann Laplacian on a bounded domain may have a nonempty essential spectrum (see, for instance, Remark 6.1 or [6]). The necessary and sufficient conditions for the absence of the essential spectrum in terms of capacities were obtained by Maz’ya [8].

The aim of this paper is to present estimates for $R_B(\Omega, \lambda)$, which involve only the most basic characteristics of Ω and constants depending only on the dimension n. The estimate from below (1.2) for $R_B(\Omega, \lambda)$ and the estimate from above (4.1) for $R_D(\Omega, \lambda)$ hold for all bounded domains. The upper bound (4.2) for $R_N(\Omega, \lambda)$ is obtained for domains Ω of class C^α, i.e., under the following assumption:

- every point $x \in \partial\Omega$ has a neighborhood U_x such that $\Omega \cap U_x$ coincides (in a suitable coordinate system) with the subgraph of a continuous function f_x. If all the functions f_x satisfy the Hölder condition of order α, one says that Ω belongs to the class C^α. For domains $\Omega \in C^\alpha$ with $\alpha \in (0, 1)$ our estimates $R_B(\Omega, \lambda) = O(\lambda^{n-\alpha})$ and $R_N(\Omega, \lambda) = O(\lambda^{(n-1)/\alpha})$ are order sharp in the scale C^α as $\lambda \to \infty$. The latter estimate implies that the Weyl formula holds for the Neumann Laplacian whenever $\alpha > 1 - \frac{1}{n}$. If $\alpha \leq 1 - \frac{1}{n}$, then there exist domains in which the Weyl formula for $N_N(\Omega, \lambda)$ fails (see Remark 4.2 for details or [11] for more advanced results).

For domains of class C^∞ our methods only give the known remainder estimate $R_B(\Omega, \lambda) = O(\lambda^{n-1} \log \lambda)$. To obtain the order sharp estimate $O(\lambda^{n-1})$, one has to use more sophisticated techniques. The most advanced results in this direction were obtained in [7], where the estimate $R_B(\Omega, \lambda) = O(\lambda^{n-1})$ was established for domains which belong to a slightly better class than C^1.

Throughout the paper, we use the following notation.

- $d(x)$ is the Euclidean distance from the point $x \in \Omega$ to the boundary $\partial\Omega$;
- $\Omega_\delta^b := \{x \in \Omega \mid d(x) \leq \delta\}$ is the internal closed δ-neighborhood of $\partial\Omega$;
- $\Omega_\delta := \Omega \setminus \Omega_\delta^b$ is the interior part of Ω.

1 Lower Bounds

Denote by $\Pi_B(\lambda)$ the spectral projection of the operator $-\Delta_B$ corresponding to the interval $[0, \lambda^2]$. Let $e_B(x, y; \lambda)$ be its integral kernel (the so-called spectral function). It is well known that $e_B(x, y; \lambda)$ is an infinitely differentiable function on $\Omega \times \Omega$ for each fixed λ and that $e_B(x, x; \lambda)$ is a nondecreasing polynomially bounded function of λ for each fixed $x \in \Omega$.

By the spectral theorem, the cosine Fourier transform of $\frac{d}{d\lambda} e_B(x, y; \lambda)$ coincides with the fundamental solution $u_B(x, y; t)$ of the wave equation in Ω. On the other hand, due to the finite speed of propagation, $u_B(x, x; t)$ is equal to $u_0(x, x; t)$ whenever $t \in (-d(x), d(x))$, where $u_0(x, y; t)$ is the