A matrix $M \in M_{n \times m}(K)$ is an element of a vector space of finite dimension n^2. When $K = \mathbb{R}$ or $K = \mathbb{C}$, this space has a natural topology, that of K^{nm}. Therefore we may manipulate such notions as open and closed sets, and continuous and differentiable functions.

5.1 Special Matrices

5.1.1 Hermitian Adjoint

When considering matrices with complex entries, a useful operation is complex conjugation $z \mapsto \overline{z}$. One denotes by M^\ast the matrix obtained from M by conjugating the entries. We then define the Hermitian adjoint matrix of M by

$$M^\ast := (\overline{M})^T = M^\dagger.$$

One has $m_{ij}^* = \overline{m_{ji}}$ and $\det M^\ast = \overline{\det M}$. The map $M \mapsto M^\ast$ is an antiisomorphism, which means that it is antilinear (meaning that $(\lambda M)^\ast = \overline{\lambda} M^\ast$) and bijective. In addition, we have the product formula

$$(MN)^\ast = N^\ast M^\ast.$$

If M is nonsingular, this implies $(M^\ast)^{-1} = (M^{-1})^\ast$; this matrix is sometimes denoted $M^{-\ast}$.

The interpretation of the Hermitian adjoint is that if we endow \mathbb{C}^n with the canonical scalar product

$$\langle x, y \rangle = \overline{x_1 y_1} + \cdots + \overline{x_n y_n},$$

and with the canonical basis, then M^\ast is the matrix of the adjoint $(u_M)^\ast$; that is,

$$\langle Mx, y \rangle = \langle x, M^\ast y \rangle, \quad \forall x, y \in \mathbb{C}^n.$$
5.1.2 Normal Matrices

Definition 5.1 A matrix $M \in M_n(C)$ is normal if M and M^* commute: $M^*M = MM^*$.

If M has real entries, this amounts to having $MM^T = M^TM$.

Because a square matrix M always commutes with M, $-M$, or M^{-1} (assuming that the latter exists), we can define sub-classes of normal matrices. The following statement serves also as a definition of such classes.

Proposition 5.1 The following matrices $M \in M_n(C)$ are normal.

- Hermitian matrices, meaning that $M^* = M$
- Skew-Hermitian matrices, meaning that $M^* = -M$
- Unitary matrices, meaning that $M^* = M^{-1}$

The Hermitian, skew-Hermitian, and unitary matrices are thus normal. One verifies easily that H is Hermitian (respectively, skew-Hermitian) if and only if x^*Hx is real (respectively, pure imaginary) for every $x \in C^n$.

For real-valued matrices, we have instead

Definition 5.2 A square matrix $M \in M_n(R)$ is

- Symmetric if $M^T = M$
- Skew-symmetric if $M^T = -M$
- Orthogonal if $M^T = M^{-1}$

We denote by H_n the set of Hermitian matrices in $M_n(C)$. It is an R-linear subspace of $M_n(C)$, but not a C-linear subspace, because iM is skew-Hermitian when M is Hermitian. If $M \in M_{n \times m}(C)$, the matrices $M + M^*$, $i(M^* - M)$, MM^*, and M^*M are Hermitian. One sometimes calls $\frac{1}{2}(M + M^*)$ the real part of M and denotes it $\Re M$. Likewise, $\frac{1}{2i}(M - M^*)$ is the imaginary part of M and is denoted $\Im M$. Both are Hermitian and we have

$$M = \Re M + i\Im M.$$

This terminology anticipates Chapter 10.

A matrix M is unitary if u_M is an isometry, that is $\langle Mx, My \rangle \equiv \langle x, y \rangle$. This is equivalent to saying that $\|Mx\| \equiv \|x\|$. The set of unitary matrices in $M_n(C)$ forms a multiplicative group, denoted by U_n. Unitary matrices satisfy $|\det M| = 1$, because $\det M^*M = |\det M|^2$ for every matrix M and $M^*M = I_n$ when M is unitary. The set of unitary matrices whose determinant equals 1, denoted by SU_n is obviously a normal subgroup of U_n.

A matrix with real entries is orthogonal (respectively, symmetric, skew-symmetric) if and only if it is unitary, Hermitian, or skew-Hermitian.

5.1.3 Matrices and Sesquilinear Forms

Given a matrix $M \in M_n(C)$, the map