Chapter 6
Graphs, Part II: More Advanced Notions

6.1 Γ -Cycles, Cocycles, Cotrees, Flows, and Tensions

In this section, we take a closer look at the structure of cycles in a finite graph G. It turns out that there is a dual notion to that of a cycle, the notion of a cocycle. Assuming any orientation of our graph, it is possible to associate a vector space F with the set of cycles in G, another vector space T with the set of cocycles in G, and these vector spaces are mutually orthogonal (for the usual inner product). Furthermore, these vector spaces do not depend on the orientation chosen, up to isomorphism. In fact, if G has m nodes, n edges, and p connected components, we prove that $\dim F = n - m + p$ and $\dim T = m - p$. These vector spaces are the flows and the tensions of the graph G, and these notions are important in combinatorial optimization and the study of networks. This chapter assumes some basic knowledge of linear algebra.

Recall that if G is a directed graph, then a cycle C is a closed e-simple chain, which means that C is a sequence of the form $C = (u_0, e_1, u_1, e_2, u_2, \ldots, u_{n-1}, e_n, u_n)$, where $n \geq 1$; $u_i \in V$; $e_i \in E$ and

$$u_0 = u_n; \quad \{s(e_i), t(e_i)\} = \{u_{i-1}, u_i\}, \ 1 \leq i \leq n \text{ and } e_i \neq e_j \text{ for all } i \neq j.$$

The cycle C induces the sets C^+ and C^- where C^+ consists of the edges whose orientation agrees with the order of traversal induced by C and where C^- consists of the edges whose orientation is the inverse of the order of traversal induced by C. More precisely,

$$C^+ = \{e_i \in C \mid s(e_i) = u_{i-1}, t(e_i) = u_i\}$$

and

$$C^- = \{e_i \in C \mid s(e_i) = u_i, t(e_i) = u_{i-1}\}.$$

For the rest of this section, we assume that G is a finite graph and that its edges are
Graphs, Part II: More Advanced Notions

Fig. 6.1 Graph G_8 named, e_1, \ldots, e_n.

Definition 6.1. Given any finite directed graph G with n edges, with every cycle C is associated a *representative vector* $\gamma(C) \in \mathbb{R}^n$, defined so that for every i, with $1 \leq i \leq n$,

$$
\gamma(C)_i = \begin{cases}
+1 & \text{if } e_i \in C^+ \\
-1 & \text{if } e_i \in C^- \\
0 & \text{if } e_i \notin C.
\end{cases}
$$

For example, if $G = G_8$ is the graph of Figure 6.1, the cycle

$$
C = (v_3, e_7, v_4, e_6, v_5, e_5, v_2, e_1, v_1, e_2, v_3)
$$

corresponds to the vector

$$
\gamma(C) = (-1, 1, 0, 0, -1, -1, 1).
$$

Observe that distinct cycles may yield the same representative vector unless they are simple cycles. For example, the cycles

$$
C_1 = (v_2, e_5, v_5, e_6, v_4, e_4, v_2, e_1, v_1, e_2, v_3, e_3, v_2)
$$

and

$$
C_2 = (v_2, e_1, v_1, e_2, v_3, e_3, v_2, e_5, v_5, e_6, v_4, e_4, v_2)
$$

yield the same representative vector

$$
\gamma = (-1, 1, 1, 1, 1, 1, 0).
$$

In order to obtain a bijection between representative vectors and “cycles”, we introduce the notion of a “Γ-cycle” (some authors redefine the notion of cycle and call “cycle” what we call a Γ-cycle, but we find this practice confusing).

1 We use boldface notation for the edges in E in order to avoid confusion with the edges occurring in a cycle or in a chain; those are denoted in italic.