2 The Electromagnetic Field of a Known Charge Distribution

2.1 The Stationary-Action Principle and Conservation Theorems

If the field equations originate from a stationary-action principle, then a conserved current can be constructed for each parameter of an invariance group.

Field theory may be regarded as a generalization of the mechanics of point particles, in which the dynamical variables \(q_i(t) \) are replaced with fields \(\Phi(x, t) \), such as \(E(x, t) \) and \(B(x, t) \). The discrete index \(i \) goes over to the continuous variable \(x \), and, accordingly, the sum \(\sum_i \) is replaced with an integral \(\int d^3x \). A direct transcription of the formalism of I, §3, leads to infinite-dimensional manifolds, which we would prefer to avoid. Instead, we merely generalize the stationary-action principle (1:2.3.20) in order to find the analogues of the constants arising from the invariance properties. It is clear that in field theory the action \(\int dt \ L(q, \dot{q}) \) involves an integral over a four-dimensional submanifold \(N_4 \), and thus requires a 4-form, which allows the construction of a chart-independent integral.

The Lagrangian Formulation of Field Theory (2.1.1)

The action is given by

\[
W = \int_{N_4} \mathcal{L}(\Phi, d\Phi),
\]
where $\mathcal{L} \in E_4$ is the Lagrangian. The field equations result from the requirement that $\partial W = 0 \forall N_4$ compact and $\forall \Phi$ such that $\partial \Phi |_{\partial N_4} = 0.$

If we strengthen the homogeneous Maxwell equations to $F = dA$, then in pseudo-Riemannian space, the appropriate

Electromagnetic Lagrangian (2.1.2)

is

$$\mathcal{L} = -\frac{1}{2} dA \wedge *dA - A \wedge *J.$$

Proof

Making a variation $A \rightarrow A + \delta A$ and using (1.2.18) (a), one finds

$$- \delta W = \int_{N_4} \delta A \wedge [*J + d* dA] + \int_{\partial N_4} \delta A \wedge *dA,$$

which vanishes if $\delta A |_{\partial N_4} = 0$ and $d* F = -*J$.

Remarks (2.1.3)

1. The variational formulation offers no guarantee of existence or uniqueness of the solutions of the field equations. Nowhere has it been assumed that $d* J = 0$, though without this condition it is not possible to satisfy $\delta W = 0 \forall \delta A$ such that $\delta A |_{\partial N_4} = 0$. The reason is easy to discover. With the gauge transformation $A \rightarrow A + d\Lambda$, where $\Lambda |_{\partial N_4} = 0$, W changes by $\int_{N_4} \Lambda d*J$, and is linear in Λ not only for infinitesimal Λ. As a linear functional, either W has no stationary points, or else, if $d* J = 0$, it has a plateau. Accordingly, either there are no solutions at all, or else the solution is not uniquely fixed by any boundary condition whatsoever, because there is always the possibility of a gauge transformation.

2. According to (I: 5.2.8),

$$-\frac{1}{2} F \wedge *F = -\frac{1}{4} F_{\sigma \rho} F^{\sigma \rho} *1 = \frac{1}{2} (|E|^2 - |B|^2) *1.$$

The sign of \mathcal{L} has been chosen so that the interaction

$$-A \wedge *J = -iJ A = -J^2 A *1$$

of a point particle moving along the world-line $x(s)$ (cf. (1.3.25; 2)) has the same sign

$$-e \int_{-\infty}^{\infty} ds \dot{z}^\nu(s) A_\nu(z(s)) \delta^4 (x - z(s)) *1$$

† We use the symbol δ in § 2.1 for variations, rather than for codifferentials.