Large N Asymptotics in Random Matrices
The Riemann–Hilbert Approach

Alexander R. Its
Department of Mathematics Sciences, Indiana University–Purdue University
Indianapolis, Indianapolis, IN 46202-3216, USA itsa@math.iupui.edu

5.1 The RH Representation of the Orthogonal Polynomials
and Matrix Models ...351
5.2 The Asymptotic Analysis of the RH Problem.
The DKMVZ Method ...373
5.3 The Parametrix at the End Points. The Conclusion of
the Asymptotic Analysis ...383
5.4 The Critical Case. The Double Scaling Limit and the
Second Painlevé Equation394
References ..412

5.1 The RH Representation of the Orthogonal Polynomials
and Matrix Models

5.1.1 Introduction

5.1.1.1 Hermitian Matrix Model

The Hermitian matrix model is defined as the ensemble \mathcal{H}_N of random
Hermitian $N \times N$ matrices $M = (M_{ij})_{i,j=1}^N$ with the probability distribution

$$\mu_N (dM) = \hat{Z}_N^{-1} \exp(-N \operatorname{Tr} V(M)) \, dM .$$

(5.1)

Here the (Haar) measure dM is the Lebesgue measure on $\mathcal{H}_N \equiv \mathbb{R}^{N^2}$, i.e.,

$$dM = \prod_j dM_{jj} \prod_{j<k} dM_{jk}^R dM_{jk}^I, \quad M_{jk} = M_{jk}^R + iM_{jk}^I .$$

The exponent $V(M)$ is a polynomial of even degree with a positive leading
coefficient,
\[
V(z) = \sum_{j=1}^{2m} t_j z^j, \quad t_{2m} > 0,
\]
and the normalization constant \(\hat{Z}_N \), which is also called \textit{partition function}, is given by the equation,
\[
\hat{Z}_N = \int_{\mathcal{H}_N} \exp(-N \text{Tr} V(M)) \, dM,
\]
so that,
\[
\int_{\mathcal{H}_N} \mu_N(dM) = 1.
\]
The model is also called a \textit{unitary ensemble}. The use of the word “unitary” refers to the invariance properties of the ensemble under unitary conjugation. The special case when \(V(M) = M^2 \) is called the \textit{Gaussian Unitary Ensemble} (GUE). (we refer to the book \cite{40} as a basic reference for random matrices; see also the more recent survey \cite{45} and monograph \cite{12}).

\subsection*{5.1.1.2 Eigenvalue Statistics}

Let \(z_0(M) < \cdots < z_N(M) \) be the ordered eigenvalues of \(M \). It is a basic fact (see e.g. \cite{45} or \cite{12}) that the measure (5.1) induces a probability measure on the eigenvalues of \(M \), which is given by the expression
\[
\frac{1}{Z_N} \prod_{1 \leq j < k \leq N} (z_j - z_k)^2 \exp\left(-N \sum_{j=1}^N V(z_j)\right) \, dz_0 \ldots dz_N,
\]
where the reduced partition function \(Z_N \) is represented by the multiple integral
\[
Z_N = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{1 \leq j < k \leq N} (z_j - z_k)^2 \exp\left(-N \sum_{j=1}^N V(z_j)\right) \, dz_0 \ldots dz_N.
\]
The principal object of interest in the random matrix theory is the \textit{m-point correlation function} \(K_{Nm}(z_0 \cdots z_m) \) which is defined by the relation
\[
K_{Nm}(z_0 \cdots z_m) \, dz_0 \ldots dz_m
= \text{the joint probability to find the } k\text{th eigenvalue in the interval } [z_k, z_k + dz_k], \, k = 1, \ldots, m.
\]
The principal issue is the \textit{universality properties} of the random matrix ensembles. More specifically, this means the analysis of the \textit{m-point correlation}