Some Remarks on Bezout's Theorem and Complexity Theory

MICHAEL SHUB

We begin by establishing the smoothness and irreducibility of certain algebraic varieties. Whereas these facts must be standard to algebraic geometers, they do not seem readily available.

For d and n positive integers, let $\mathcal{F}_{d,n}$ and $\mathcal{H}_{d,n}$ denote the spaces of polynomial mappings and homogeneous polynomial mappings $f: \mathbb{C}^n \to \mathbb{C}$ of degree less than or equal to d in the case of $F_{d,n}$ and equal to d in the case of $H_{d,n}$. For a multi-index $D = (d_1, \ldots, d_k)$, let $\mathcal{F}_{D,n}$ and $\mathcal{H}_{D,n}$ be the products

$$\prod_{i=1}^k \mathcal{F}_{d_i,n} \quad \text{and} \quad \prod_{i=1}^k \mathcal{H}_{d_i,n}.$$

So an element $F \in \mathcal{F}_{D,n}$ or $H_{D,n}$ is a polynomial mapping $F: \mathbb{C}^n \to \mathbb{C}^k$. The evaluation map $ev: \mathcal{F}_{D,n} \times \mathbb{C}^n \to \mathbb{C}^k$ and $ev: H_{D,n} \times \mathbb{C}^n \to \mathbb{C}^k$ is just the map $(F, x) \to F(x)$. For fixed F, $F^{-1}(0) \subset \mathbb{C}^n$ is the algebraic set determined by the simultaneous vanishing of the $f_{d_i,n}$.

Lemma 1. Any $y \in \mathbb{C}^k$ is a regular value for

$$ev: H_{D,n} \times (\mathbb{C}^n - \{0\}) \to \mathbb{C}^k$$

and

$$ev: F_{D,n} \times \mathbb{C}^n \to \mathbb{C}^k.$$

Proof. $Dev(F, x)(h, v) = h(x) + DF_x(v)$. The values of $h(x)$ alone are sufficient to make $D_{(F, x)}ev$ surjective.

Thus, by the implicit function theorem the union of the algebraic sets determined by the F's is smooth in the product. For $F \in \mathcal{F}_{D,n}$, let $Z_F = \{x | F(x) = 0\}$, $Z_{F,0,n} = Z_F = \{(F, x) | F(x) = 0\}$. Similarly for $F \in H_{D,n}$, let $Z_F = \{x \in \mathbb{C}^n - \{0\} | F(x) = 0\}$, $Z_{F,0,n} = Z_F = \{(F, x) \in H_{D,n} \times (\mathbb{C}^n - \{0\}) | F(x) = 0\}$, and $Z_{F,0,n} = Z_F = \{(F, x) \in H_{D,n} | F \neq 0\}$; Z_F and $Z_{F,0,n}$ are $ev^{-1}(0)$, so we have:

Proposition 1. (a) Z_F is a connected smooth variety in $\mathcal{F}_{D,n} \times \mathbb{C}^n$ of codimension k;

Partially supported by an NSF grant.
(b) Z_{χ} and $Z_{\chi'}$ are connected smooth varieties in $\mathcal{H}_{D,n} \times (\mathbb{C}^n - \{0\})$ of codimension k.

Proof. (b) It remains to prove the connectedness. The group of linear isomorphisms acts transitively on $\mathbb{C}^n - \{0\}$, and on $\mathcal{H}_{D,n} \times (\mathbb{C}^n - \{0\})$ by $(F, x) \rightarrow (F \circ L^{-1}, Lx)$, this action preserves Z_{χ} and $Z_{\chi'}$. Thus, the maps $Z_{\chi} \rightarrow \mathbb{C}^n - \{0\}$, $Z_{\chi'} \rightarrow \mathbb{C}^n - \{0\}$ are surjective locally trivial fibrations with connected base and connected fiber so they are connected, as follow: Given (f_1, x_1) and (f_2, x_2) in $Z_{\chi'}$, choose a path x_t from x_1 to x_2, for $1 \leq t \leq 2$. Now lift x_t to (\hat{f}_t, x_t) such that $\hat{f}_1 = f_1$; the endpoint of this path is in the fiber over x_2. This is a complex linear space minus 0 and, hence, is connected, so we continue the path in the fiber to (f_2, x_2). The same argument holds for Z_{χ}; for $Z_{\chi'}$, simply replace the linear group by the affine group.

We use $P(V)$ to denote the projective space of the vector space V, i.e., $V - 0$ mod the action of the nonzero scalars $\mathbb{C}^* = \mathbb{C} - 0$ and $PC(n - 1)$ for the projective space of \mathbb{C}^n.

$\mathbb{C}^* \times \mathbb{C}^*$ acts freely on $(\mathcal{H}_{D,n} - \{0\}) \times (\mathbb{C}^n - \{0\})$ by coordinatewise multiplication. Let N denote the dimension of $\mathcal{H}_{D,n}$:

$$N = \sum_{i=1}^k \left(n + d_i - 1 \right).$$

The $\mathbb{C}^* \times \mathbb{C}^*$ action leaves $Z_{\chi'} \subset \mathcal{H}_{D,n} \times \mathbb{C}^n - \{0\}$ invariant. As the action is transversal to $S^{2N-1} \times S^{2n-1}$, $Z_{\chi'} \cap S^{2N-1} \times S^{2n-1}$ is a smooth manifold, and, therefore, the quotient of $Z_{\chi'}$ by the $\mathbb{C}^* \times \mathbb{C}^*$ action is the same as $Z_{\chi'} \cap S^{2N-1} \times S^{2n-1}$ by the unit complexes $S^1 \times S^1$. This later group is compact. So the quotient by the free action is a smooth subvariety $\mathcal{Z}_{D,n} = \mathcal{Z}$ of $P(\mathcal{H}_{D,n}) \times PC(n - 1)$. As $Z_{\chi'}$ is connected, so is the quotient manifold \mathcal{Z}. A connected, smooth projective variety is irreducible.

Theorem 1. $\mathcal{Z}_{D,n}$ is a connected, smooth irreducible projective subvariety of $P(\mathcal{H}_{D,n}) \times PC(n - 1)$ of codimension k.

Let $C_{D,n} = \{ F \in \mathcal{H}_{D,n} - \{0\} | \exists x \in \mathbb{C}^n - \{0\} \text{ with } F(x) = 0 \}$, i.e., $C_{D,n}$ is the set of those systems with a common root. Let $\mathcal{C}_{D,n}$ be the image of $C_{D,n}$ in $P(\mathcal{H}_{D,n})$.

Corollary 1. $\mathcal{C}_{D,n}$ is an irreducible subvariety of $P(\mathcal{H}_{D,n})$.

Proof. It is the projection of $\mathcal{Z}_{D,n}$ on $P(\mathcal{H}_{D,n})$; as $\mathcal{Z}_{D,n}$ is irreducible, its image must be.

The case of $(n - 1)$ homogeneous polynomials in n variables is the case of Bezout's theorem; there are generically...