Alveolar Gas Equation (AGE)

Description

This program uses the alveolar gas equation to compute various pulmonary gas exchange indices. These are:

1. Alveolar-arterial oxygen tension gradient (A - aP02)
2. Arterial/alveolar oxygen tension ratio (a/APO2)
3. Respiratory index (RI)
4. Arterial PO2 to FIO2 ratio

These are discussed in the following paragraphs.

A - aPO2

The alveolar arterial oxygen tension gradient (A - aPO2) is the difference between the calculated alveolar oxygen tension (using the alveolar gas equation) and the arterial oxygen tension (usually measured from a sample of arterial blood). The calculated arterial oxygen tension from the alveolar gas equation is given by

\[PAO2 = FI02 \times (PB - PH2O) - PaC02 \times (FI02 + (1 - FI02)/R) \]

where

- \(FIO2 \) = fraction of inspired oxygen
- \(PB \) = barometric pressure (typically 760 mmHg)
- \(PH2O \) = water vapor pressure at 37 degrees Celsius (typically 47 mmHg)
- \(PaC02 \) = arterial blood carbon dioxide tension
- \(R \) = respiratory quotient (ratio of carbon dioxide production to oxygen consumption, typically 0.8)

The upper limit of normal for the A - aPO2 on room air is frequently given as 15 mmHg, but even in healthy people the A - aPO2 depends on so many
factors (eg, age, FIO2) that a normal range for all circumstances is difficult to establish. References [1] and [2] provide useful clinical information on the topic.

Respiratory Index

The respiratory index (RI) is the alveolar-arterial oxygen tension gradient (A - aPO2) divided by the arterial blood oxygen tension (PaO2):

$$RI = \frac{A - aP02}{PaO2}$$

One advantage of the respiratory index is that it is less influenced by the inspired oxygen concentration (FIO2) than the A - aPO2. Its upper limit of normal is sometimes given as 0.37 [3]. References [4] and [5] provide further information.

a/APO2

The arterial/alveolar oxygen tension ratio is another index of gas exchange with a reduced dependence on FIO2. Its lower limit of normal is sometimes given as 0.8 [6, 7].

```
ALVEOLAR GAS EQUATION
D. John Doyle MD PhD

INPUT DATA
BAR. PRESSURE (MMHG)= 760
FIO2 (%)= 21
ARTERIAL P02 (MMHG)= 55
ARTERIAL PC02 (MMHG)= 34

DERIVED DATA
ALVEOLAR P02 (MMHG)= 109
AA P02 DIFFERENCE (MMHG)= 54
AA RATIO= .5
RESPIRATORY INDEX= .98
P02/FIO2 RATIO= 262

Ok
```

Figure 12.1.