MIRROR SYMMETRY AND ELLIPTIC CURVES

ROBBERT DIJKGRAAF

ABSTRACT. I review how recent results in quantum field theory confirm two general predictions of the mirror symmetry program in the special case of elliptic curves: (1) counting functions of holomorphic curves on a Calabi-Yau space (Gromov-Witten invariants) are 'quasi-modular forms' for the mirror family; (2) they can be computed by a summation over trivalent Feynman graphs.

1. INTRODUCTION

As discussed in detail by Kontsevich in this volume [Kon] the moduli space M_g of algebraic curves has an interesting generalisation to the moduli space $M_g(X, d)$ of pairs (C, f) with C a genus g curve and $f : C \to X$ a degree d holomorphic map into a variety X. Tautological cohomology classes in the stable compactification $\overline{M}_g(X, d)$ are known as Gromov-Witten invariants. They appeared in Gromov's fundamental work on pseudo-holomorphic curves in symplectic geometry [Gro] and Witten's equally fundamental study of topological sigma models [Wit]. In the special case of genus zero curves, Gromov-Witten invariants are directly related to the quantum cohomology of the variety X [LVW] and the symplectic Floer cohomology of the loop space LX [Flo].

The moduli space $M_g(X, d)$ is also the primary object of study in the mirror symmetry program [Yau]. Mirror symmetry is concerned with counting the number of holomorphic curves on Calabi-Yau manifolds, i.e. compact Kähler manifolds X with trivial canonical bundle K_X. One tries to define and calculate the generating functions

\[F_g(t) = \sum_d N_{g,d} q^d, \quad q = e^{2\pi i t}, \]

where $N_{g,d}$ is the appropriately defined 'number' of genus g, degree d curves on X. It can for example be given by the (orbifold) Euler character of $M_g(X, d)$.

In the above we assumed for convenience that $H^2(X)$ is one-dimensional and generated by the Kähler form ω; otherwise, the degree is actually
a multi-degree and F_g a multi-variable function. The above definition should also be slightly modified in the case $g = 0$ or 1, since these curves are not stable. For rational curves $C \cong \mathbb{P}^1$ we pick three hypersurfaces $H_0, H_1, H_\infty \subset X$, Poincaré dual to ω, and consider maps $x : \mathbb{P}^1 \to X$ such that $x(z) \in H_z$ for $z = 0, 1, \infty$. This then defines the third derivative F''_0 of F_0. In case of an elliptic curve $C \cong E$ we pick a point $0 \in E$ and demand $x(0) \in H_0$, which then gives F'_1. In this note we will however be mainly concerned with the case $g > 1$.

The generating functions $F_g(t)$ are more or less by definition topological or, more precisely, symplectic manifold invariants of X. They do not depend on the complex structure of X, i.e. on the particular point in the moduli space \mathcal{M}_X of manifolds of type X, but there is the obvious dependence on the parameter $t \in H^2(X)$, that labels the Kähler or symplectic class. The mirror conjecture states that for a Calabi-Yau manifold the functions $F_g(t)$ have an alternative interpretations as complex manifold invariants of a family of ‘mirror’ Calabi-Yau manifolds \tilde{X}_t, where t is now interpreted as a suitable coordinate on $\mathcal{M}_{\tilde{X}}$, the moduli space of manifolds of type \tilde{X}.

Until recently most calculations were concerned with genus zero, where mirror symmetry is supposed to relate the function $F_0(t)$, that computes (part of) the quantum cohomology of X, to variation of Hodge structures for the family \tilde{X}_t. The precise formulation of the mirror symmetry conjecture for higher genus, i.e. the interpretation of the objects $F_g(t)$ in terms of the geometry of the mirror family \tilde{X}_t, was not clear. This has changed remarkably with the beautiful work of Bershadsky, Cecotti, Ooguri and Vafa [BCOV]. They have indicated the nature of the objects associated to \tilde{X} that are conjecturally equivalent to the invariants F_g associated to X, at least for the case of Calabi-Yau three-folds. This leads to two interesting predictions:

First, $F_g(t)$ should be a meromorphic object that can be obtained as the limit

$$F_g(t) = \lim_{t \to \infty} F_g^*(t, \bar{t})$$

of a non-holomorphic section F_g^* of the line bundle $L^{g(2g-2)}$ over $\mathcal{M}_{\tilde{X}}$. Here L is the bundle of holomorphic 3-forms with fiber $H^0(K_X)$. Sections of powers of this line bundle can be considered as generalizations of modular forms. The limiting holomorphic objects F_g will have anomalous transformation properties, and will be named quasimodular forms. So, roughly we have:

Claim 1 — The counting functions $F_g(t)$ of holomorphic curves on X are quasimodular forms for the mirror family \tilde{X}_t.

Since under suitable circumstances the space of these quasimodular forms