A Personal Perspective of the Alpern-Schneider Characterization of Safety and Liveness

Martin Rem

0 Introduction

In [1] Alpern and Schneider give a topological characterization of safety and liveness properties. This note is the formal reflection of my own understanding of their theory.

Throughout this note A is a fixed set of at least two symbols. As usual, A^* denotes the set of all finite sequences of symbols from A, and A^ω denotes the set of all infinite sequences of symbols from A. Let P be the set of all boolean functions on A^ω. Elements of P are known as properties. They are our object of study.

We give a few examples of properties, formulated as predicates in sequence t, $t \in A^\omega$. Let $a \in A$.

$p0$: \hspace{1cm} false;
$p1$: \hspace{1cm} the first symbol of t is a;
$p2$: \hspace{1cm} the first symbol of t differs from a;
$p3$: \hspace{1cm} the first symbol of t is a, and t contains a symbol that differs from a;
$p4$: \hspace{1cm} the number of a's in t is finite;
$p5$: \hspace{1cm} the number of a's in t is infinite;
$p6$: \hspace{1cm} true.

1 Safety properties

Let $x \in A^*$ and $y \in A^\omega$. We say that x is a prefix of y, notation $x \preceq y$, when
where catenation of sequences is denoted by juxtaposition. With each property \(p \) we associate a set \(\text{pref}_p \), \(\text{pref}_p \subseteq A^* \), as follows:

\[
x \in \text{pref}_p \iff (\exists y : y \in A^* \land x \leq y : p.y)
\]

Set \(\text{pref}_p \) is prefix-closed:

Property 0 \(wx \in \text{pref}_p \Rightarrow w \in \text{pref}_p \)

Proof

\[
wx \in \text{pref}_p \\
= \quad \{\text{definition of } \text{pref}\}
\]

\[
(\exists y : y \in A^* \land wx \leq y : p.y)
\]

\[
\Rightarrow \quad \{wx \leq y \Rightarrow w \leq y\}
\]

\[
(\exists y : y \in A^* \land w \leq y : p.y)
\]

\[
= \quad \{\text{definition of } \text{pref}\}
\]

\[
w \in \text{pref}_p
\]

(*End of proof*)

We can form negations, conjunctions, and disjunctions of properties in the usual way, for example \((p \lor q).t = p.t \lor q.t \). With respect to the examples in Section 0 we have \(\neg p0 = p6, \neg p1 = p2, \neg p4 = p5, p1 \lor p2 = p6, p4 \land p5 = p0, \) etc.

Property 1 \(\text{pref}.(p \lor q) = \text{pref}_p \cup \text{pref}_q \)

Proof

\[
x \in \text{pref}.(p \lor q)
\]

\[
= \quad \{\text{definition of } \text{pref}\}
\]

\[
(\exists y : x \leq y : (p \lor q).y)
\]

\[
= \quad \{\text{definition of disjunction}\}
\]

\[
(\exists y : x \leq y : p.y \lor q.y)
\]

\[
= \quad \{\text{calculus}\}
\]

\[
(\exists y : x \leq y : p.y) \lor (\exists y : x \leq y : q.y)
\]

\[
= \quad \{\text{definition of } \text{pref}\}
\]

\[
x \in \text{pref}_p \lor x \in \text{pref}_q
\]

(*End of proof*)