ON CONTINUOUS TIME LEARNING MODELS

by

Helmut Pruscha

Mathematical Institute of the University Munich

1. Inter-occurrence times of learning events

Learning models (or random systems with complete connections) like the Bush-Mosteller-type models evolves on two levels, the level of (unobservable, hypothetical) states $w \in W$, (W, W) being the state space, and on the level of (observable) events $i \in I$, where the event space

$I = \{1, 2, \ldots, m\}$

will be supposed to be finite. The step by step transitions are governed by a transition probability P from W to I and by a measurable state transformation u from $W \times I$ to W, as illustrated in Fig.1. If a starting element $w^{(0)} \in W$ is given the model can be described by two sequences $w^{(n)}$ and $\xi^{(n)}$, $n \geq 1$, of random variables on a probability space (Ω, \mathcal{F}, P), with values in W and I, respectively (see [4] Th. 2.1., p. 64 and Prop. 2.1.4, p. 66).

As an example consider a linear learning model, namely the so-called linear OM-chain (Onicescu and Mihoc [8]), where W is the set of probability vectors

$w = (w_1, \ldots, w_m)$

and where

$P(w, i) = w_i$

$u(w, i)_j = a_i w_j + (1 - a_i) \Lambda_{ij}$

with coefficients a_i, $0 < a_i < 1$ and with an $m \times m$ stochastic matrix $\Lambda = (\Lambda_{ij})$. If all a_i are zero, we are faced with a simple Markov chain (see [9] for a detailed analysis of linear OM-chains).

Up to now events are supposed to occur on a discrete time scale. In order to implement information on the inter-occurrence times, Iosifescu [3] introduced a third sequence η_n, $n > 0$, of \mathbb{R}_+-valued random variables on (Ω, \mathcal{F}, P), the waiting times or interoccurrence times between two succeeding events. Now the evolution of the process is governed by a transition probability \mathcal{P} from W to X, where

$X = \mathbb{R}_+ \times I$,

U. Herkenrath et al. (eds.), Mathematical Learning Models — Theory and Algorithms
© Springer-Verlag New York Inc. 1983
Evolution of a discrete time learning model (or random system with complete connections) on the two levels of states and events, respectively.

Fig. 1. Evolution of a learning model (or random system with complete connections) when inter-occurrence times are implemented.

Fig. 2. Evolution of a learning model (or random system with complete connections) when inter-occurrence times are implemented.