§ 14. The countable chain condition

The algebraic behavior of the regular open algebra of a topological space X reflects, at least in part, the topological properties of X. One particular topological property of X, namely the possession of a countable base, has important algebraic repercussions, which we now proceed to study.

A Boolean algebra A is said to satisfy the countable chain condition if every disjoint set of non-zero elements of A is countable. (Two elements p and q of a Boolean algebra are disjoint if $p \land q = 0$; a set E is disjoint if every two distinct elements of E are disjoint.) The regular open algebra of a space with a countable base does satisfy the countable chain condition. Proof: select a countable base, and, given a disjoint class of non-empty regular open sets, find in each one a set of the base. An algebra satisfying the countable chain condition is sometimes called countably decomposable.

Lemma 1. A Boolean algebra A satisfies the countable chain condition if and only if every set E in A has a countable subset D such that D and E have the same set of upper bounds.

Proof. Assume first that the condition is satisfied and suppose that E is a disjoint set of non-zero elements of A. Let D be a countable subset of E with the same set of upper bounds. If E had an element not in D, the complement of such an element would be an upper bound of D but not of E. Conclusion: $E = D$, and therefore E is countable.
To prove the converse, assume now that the countable chain condition is satisfied and let E be an arbitrary subset of A. Let M be the ideal generated by E; the elements of M are just those elements of A that can be dominated by the supremum of some finite subset of E. It follows that M and E have the same set of upper bounds. Apply Zorn's lemma to find a maximal disjoint set, say F, of non-zero elements of M. Reasoning as in the preceding paragraph, we infer that F and M have the same set of upper bounds. Since the countable chain condition holds, the set F is countable. Since each of the countably many elements of F is dominated by the supremum of some finite subset of E, the union, say D, of all these finite sets is a countable subset of E with the same set of upper bounds.

COROLLARY. A Boolean algebra that satisfies the countable chain condition is complete.

Proof. Every countable supremum is formable by definition; by Lemma 1 every conceivable supremum coincides with some countable one.

The countable chain condition got its name from its close relation to a condition in which ascending chains do explicitly occur. An ascending well-ordered chain in a Boolean algebra A is a function that associates with each element a of some well-ordered set an element p_a of A so that $p_a \leq p_\beta$ whenever $a \leq \beta$. The chain is strictly ascending if $p_a \neq p_\beta$ whenever $a < \beta$, and the chain is called countable in case the set of indices is countable.

LEMMA 2. If a Boolean algebra A satisfies the countable chain condition, then every strictly ascending well-ordered chain in A is countable.