THREE LECTURES ON FLAVOUR MIXING

Guido Altarelli
Theoretical Physics Division
CERN
1211 Geneva 23, Switzerland

1. INTRODUCTION

The observation by ARGUS1 at DESY of a relatively large amount of B^0-\bar{B}^0 mixing, following a previous positive signal of mixing by UA12, was the most important experimental result of the year in particle physics (together with the very recent result on e^+/e^- by the NA33 collaboration at CERN). The UA1 result was already known last year. The ARGUS result refers to the B^0_d meson ($B^0_d \equiv b\bar{d}$, $B^0_s \equiv b\bar{s}$). In terms of $r = P(B^0 \rightarrow B^0)/P(\bar{B}^0 \rightarrow \bar{B}^0)$, i.e., the ratio of the probability for mixing and for no mixing, ARGUS finds:

$$r = 0.21 \pm 0.08$$ \hspace{1cm} (1.1)

The experimental method was described in the lectures by S.L. Wu4. On the theoretical side a large number of papers have been devoted on B^0-\bar{B}^0 mixing in the past5 and then recently6-10 after the UA1 and ARGUS results. These lectures are intended to an elementary introduction to flavour mixing in general and to B^0-\bar{B}^0 mixing in particular. Their purpose is to provide the reader with the essential background necessary to follow the current specialized literature.

2. BASIC FORMALISM

For a stable free particle at rest the quantum mechanics time evolution is given by $\psi \sim e^{-iMt}$. For an unstable particle at rest, this is modified into $\psi \sim e^{-i(M-i\Gamma/2)t}$ (in fact, $|\psi|^2 \sim e^{-\Gamma t} = e^{-t/\tau}$), with M and Γ real, positive numbers. For several coupled states M and Γ became Hermitian matrices with positive eigenvalues (i.e., the analogue of real, positive numbers). For several coupled states M and Γ became Hermitian matrices with positive eigenvalues (i.e., the analogue of real, positive numbers). In particular for B^0-\bar{B}^0 (or any other similar system), we have:

$$^\prime\prime H^\prime\prime \left(\frac{B^0}{\bar{B}^0} \right) = \begin{pmatrix}
M - i \Gamma_2/2 & M_{12} - i \Gamma_{12}/2 \\
M_{12}^* - i \Gamma_{12}/2 & M - i \Gamma_2/2
\end{pmatrix} \begin{pmatrix}
\frac{B^0}{\bar{B}^0}
\end{pmatrix}$$ \hspace{1cm} (2.1)

Note that a) $^\prime\prime H^\prime\prime$ is not Hermitian (since probability is not conserved within the B^0-\bar{B}^0 system, because of the decays); b) $H_{11} = H_{22}$ by CPT;
c) $H_{12} \neq 0$, $H_{21} \neq 0$ because of the weak interactions which violate the conservation of quark flavours. d) $\text{Im} M_{12} \neq 0$, $\text{Im} \Gamma_{12} \neq 0$ because of CP violation.

The eigenvalues of $"H"$ can be written down in the form:

$$B_{1,2} = \frac{(1+\varepsilon) B_0 \pm (1-\varepsilon) B_0}{\sqrt{2(1+|\varepsilon|^2)}}$$

Note that B_1 and B_2 are not orthogonal because $"H"$ is not Hermitian. If $\varepsilon = 0$, CP is conserved in the wave functions. In general, ε depends on the phase convention chosen. Thus, for example, ε pure imaginary does not lead to any CP violation because it can be removed by a redefinition of the relative $\Upsilon^0-\Upsilon^0$ phase. A simple calculation immediately leads to the following results for ε and the eigenvalues of M and Γ:

$$\eta = \frac{1-\varepsilon}{1+\varepsilon} = \sqrt{\frac{M_{12}^* - i\Gamma_{12}/2}{M_{12}^* - i\Gamma_{12}/2}}$$

$$M_{12} = M \pm \text{Re} Q$$

$$\Gamma_{12} = \Gamma \mp 2 \text{Im} Q$$

where M, Γ, M_{12} and Γ_{12} are defined in Eq. (2.1) and

$$Q = \sqrt{(M_{12} - i\Gamma_{12}/2)(M_{12}^* - i\Gamma_{12}/2)}$$

$\Upsilon^0-\Upsilon^0$ oscillations are caused by the different evolution in time of the eigenvectors B_1 and B_2. Starting at $t = 0$ from a pure Υ^0 state:

$$|\Psi(t=0)\rangle = |B^0\rangle = (|B_1\rangle + |B_2\rangle) \frac{\sqrt{1+|\varepsilon|^2}}{\sqrt{2(1+|\varepsilon|^2)}}$$

one obtains at time t:

$$|\Psi(t)\rangle = \sqrt{\frac{1+|\varepsilon|^2}{2(1+|\varepsilon|^2)}} \left[|B_1\rangle e^{-i(M_1 - \frac{1}{2}\Gamma_1)t} + |B_2\rangle e^{-i(M_2 - \frac{1}{2}\Gamma_2)t} \right]$$

By using Eq. (2.2) we can eliminate $|B_1\rangle$ and $|B_2\rangle$ and write $|\Phi(t)\rangle$ as a superposition of Υ^0 and Υ^0. The coefficients are the transition amplitudes: $A(B\rightarrow B)$ and $A(B\rightarrow \overline{B})$. One immediately obtains:

$$A(B\rightarrow B) = \frac{1}{2} \left[e^{-iM_1 t} e^{-\frac{1}{2}\Gamma_1 t} + e^{-iM_2 t} e^{-\frac{1}{2}\Gamma_2 t} \right]$$

$$A(B\rightarrow \overline{B}) = \frac{1-\varepsilon}{1+\varepsilon} \frac{1}{2} \left[e^{-iM_1 t} e^{-\frac{1}{2}\Gamma_1 t} - e^{-iM_2 t} e^{-\frac{1}{2}\Gamma_2 t} \right]$$

We define the ratio r of total (i.e., integrated over time) probabilities:

$$r = \frac{P(B\rightarrow \overline{B})}{P(B\rightarrow B)} = \frac{\int_{0}^{T} |A(B\rightarrow \overline{B})|^2 \, dt}{\int_{0}^{T} |A(B\rightarrow B)|^2 \, dt}$$

where T is a conveniently large time. One directly obtains from Eqs. (2.9) and (2.10):