12 POSTOPTIMALITY ANALYSIS II

In the preceding chapter we considered, in part, an assortment of postoptimality problems involving discrete changes in only selected components of the matrices C, b, or A. Therein emphasis was placed upon the extent to which a given problem may be modified without breaching its feasibility or optimality. We now wish to extend this sensitivity analysis a bit further to what is called parametric analysis. That is, instead of just determining the amount by which a few individual components of the aforementioned matrices may be altered in some particular way before the feasibility or optimality of the current solution is violated, let us generate a sequence of basic solutions which in turn become optimal, one after the other, as all of the components of C, b, or a column of A vary continuously in some prescribed direction. In this regard, the following parametric analysis will involve a marriage between sensitivity analysis and simplex pivoting.

12.1. Parametric Analysis

If we seek to

$$\max f(X) = C'X \quad \text{s.t.} \quad AX = b, \; X \geq 0,$$

then an optimal basic feasible solution emerges if $X_B = B^{-1}b \geq 0$ and $C'_R - C'_BB^{-1}R \leq 0'$ (or, in terms of the optimal simplex matrix, $C'_BB^{-1}R - C'_R \geq 0'$) with $f(X) = C'_BX_B = C'_BB^{-1}b$. Given this result as our starting point, let us examine the process of...
(1) PARAMETRIZING THE OBJECTIVE FUNCTION. Given the above optimal basic feasible solution, let us replace C by $C^* = C + \theta S$, where θ is a non-negative scalar parameter and S is a specified, albeit arbitrary, $(n \times 1)$ vector which determines a given direction of change in the coefficients $c_j, j=1, \ldots, n$. In this regard, the $c_j^*, j=1, \ldots, n$, are specified as linear functions of the parameter θ. Currently $-C'_R + C'_B B^{-1} R \geq 0'$ or $-\bar{c}_j = -c_{Rj} + C'_B Y_j \geq 0, j=1, \ldots, n-m$. If C^* is partitioned as

$$
\begin{bmatrix}
C^*_B \\
C^*_R
\end{bmatrix} = \begin{bmatrix}
C_B \\
C_R
\end{bmatrix} + \theta \begin{bmatrix}
S_B \\
S_R
\end{bmatrix},
$$

where $S_B(S_R)$ contains the components of S corresponding to the components of C within $C_B(C_R)$, then when C^* replaces C, the revised optimality condition becomes

$$
-(C'_R)^' + (C'_B)^B^{-1} R = -(C'_R + \theta S'_R) + (C'_B + \theta S'_B)B^{-1} R
\equiv 0'
$$

(12.1)

or, in terms of the individual components of (12.1),

$$
-\bar{c}_j^* = -\bar{c}_j + \theta (-s_{Rj} + S'_B Y_j) \geq 0, j=1, \ldots, n-m.
$$

(Note that the parametrization of f affects only primal optimality and not primal feasibility since X_B is independent of C). Let us now determine the largest value of θ (known as its critical value, θ_c) for which (12.1.1) holds. Upon examining this expression it is evident that the critical value of θ is that for which any increase in θ beyond θ_c makes at least one of the $-\bar{c}_j^*$ values negative, thus violating optimality.

How large of an increase in θ preserves optimality? First, if $-S'_R + S'_B B^{-1} R \geq 0'$ or $-s_{Rj} + S'_B Y_j \geq 0$, then θ can be increased without bound while still maintaining the revised optimality criterion since, in this instance, (12.1.1) reveals that $-\bar{c}_j^* \geq -\bar{c}_j \geq 0, j=1, \ldots, n-m$. Next, if $-s_{Rj} + S'_B Y_j < 0$ for some particular value of j, then $-\bar{c}_j^* \not\geq 0$ for

$$
\theta \leq \frac{\bar{c}_j}{-s_{Rj} + S'_B Y_j} = \theta_c.
$$