Lecture 8

A Priori Bounds

1 A Priori Bounds for the Riccati Equation

We want to study the equation

\[P_{n+1} = \phi_{n+1} \left(P_n - P_n H'_n (H_n P_n H'_n + R_n)^{-1} H_n P_n \right) \phi'_{n+1} + G_{n+1} Q_n G'_{n+1}, \]

where \(P_{n_0} = \Gamma \). Recall that \(P_{n+1} \) represents the prediction error covariance at time \(n+1 \) given data to time \(n \), while \(P_n - P_n H'_n (H_n P_n H'_n + R_n)^{-1} H_n P_n \) represents the filter error covariance, the error covariance matrix of the signal process \(x \) at time \(n \) given data to time \(n \). We have and will assume the matrix \(\Phi_n \) is invertible for all \(n \). When the processes arise from sampling of continuous time diffusion processes this assumption is fulfilled. Define the mapping \(\tau_{n+1} \) as

\[\tau_{n+1}(P_n) \triangleq \phi_{n+1} \left(P_n - P_n H'_n (H_n P_n H'_n + R_n)^{-1} H_n P_n \right) \phi'_{n+1} + G_{n+1} Q_n G'_{n+1}. \]

Define the set \(M_d(R) \) as the set of all \(d \times d \) real-entered matrices: \(M_d(R) \) is a subset of \(R^{d^2} \). Next, define a subset of \(M_d(R) \) consisting of all symmetric \(d \times d \) real-entered matrices:

\[SM_d(R) = \{ A \in M_d(R) \mid A = A' \}. \]
On this set, define a subset C containing all positive semidefinite $d \times d$ real-entered matrices:

$$C = \{ A \in SM_d(R) \mid A \text{ is p.s.d.} \}.$$

The set C is a cone.

Definition 8.1 C is a cone iff $C + C \subseteq C$ and $\lambda C \subseteq C$ $\forall \lambda > 0$.

For every cone there is a partial ordering: if $A \in C$ and $B \in C$, then $A \geq B$ iff $A - B \in C$.

NB: The existence of a partial ordering on a set does not imply that all elements are comparable.

Remark: Recall that the 2×2 matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is p.s.d. iff $a \geq 0$, $c \geq 0$, and $ac - b^2 \geq 0$.

Next, recall the definition of the Moore-Penrose pseudo inverse. It says that if $A \in M_d(R)$, then $A^\#$ is the unique matrix that satisfies

1. $AA^\# A = A$

2. $A^\# AA^\# = A^\#$

3. $(AA^\#)' = AA^\#$

4. $(A^\# A)' = A^\# A$.

The matrix $P = AA^\#$ is a projection onto the range of A and is idempotent (i.e., $P^2 = P$). For the geometric interpretation of the Moore-Penrose pseudo inverse, see [41].

Definition 8.2 (Duffin) If $A, B \in SM_d(R)$, then

$$(A : B) \triangleq A(A + B)^\# B.$$