Chapter 3
Counting Solutions of Congruences

In this chapter we shall use the results obtained in the preceding chapter to count solutions of certain linear and other congruences in \(s \) unknowns. By a solution of a congruence, with modulus \(r \), we mean a solution \((\text{mod } r)\), i.e., an ordered \(s \)-tuple of integers \((x_1, \ldots, x_s)\) that satisfies the congruence, with two \(s \)-tuples \((x_1, \ldots, x_s)\) and \((x'_1, \ldots, x'_s)\) that satisfy the congruence counted as the same solution if and only if \(x_i \equiv x'_i \pmod{r} \) for \(i = 1, \ldots, s \).

We shall count either all the solutions or all the solutions that are restricted in some way. For example, we might consider those solutions \((x_1, \ldots, x_s)\) such that \((x_i, r) = 1\) for \(i = 1, \ldots, s \).

We begin by counting the unrestricted solutions of the general linear congruence.

Proposition 3.1. The congruence

\[
n \equiv a_1 x_1 + \ldots + a_s x_s \pmod{r}
\]

has a solution if and only if

\[
d \mid n, \text{ where } d = (a_1, \ldots, a_s, r).
\]

If it does have a solution, then it has \(dr^{s-1} \) solutions.

Proof. The condition that \(d \mid n \) is certainly necessary for the congruence to have a solution.

P. J. McCarthy, *Introduction to Arithmetical Functions*
© Springer-Verlag New York Inc. 1986
On the other hand, suppose that $d \mid n$. We shall show, by induction on s, that the congruence has dr^{s-1} solutions.

Suppose that $s = 1$. The congruence

$$\frac{n}{d} \equiv \frac{a_1}{d} x_1 \pmod{\frac{r}{d}}$$

has a unique solution x_1: hence $n \equiv a_1 x_1 \pmod{r}$ has exactly d solutions, to wit, $x_1, x_1 + \frac{r}{d}, x_1 + 2\frac{r}{d}, \ldots, x_1 + (d - 1)\frac{r}{d}$.

Now suppose that $s > 1$ and that the assertion is true for linear congruences with $s-1$ unknowns. Let $e = (a_2, \ldots, a_s, r)$. Since $d = (a_1, e) \mid n$, the congruence $n \equiv a_1 x_1 \pmod{e}$ has d solutions. Hence, in every complete residue system (\pmod{r}) there are $(r/e)d$ solutions of this congruence.

Let x_1 be a solution of $n \equiv a_1 x_1 \pmod{e}$ and consider the congruence

$$n - a_1 x_1 \equiv a_2 x_2 + \ldots + a_s x_s \pmod{r}.$$

Since $e \mid n - a_1 x_1$, it has $e r^{s-2}$ solutions. Therefore, the congruence with s unknowns has $(r/e)dr^{s-2} = dr^{s-1}$ solutions.

Now consider the congruence

$$(*) \quad n \equiv x_1 + \ldots + x_s \pmod{r}.$$

We wish to count the solutions $\langle x_1, \ldots, x_s \rangle$ of this congruence for which the greatest common divisors (x_i, r), $i = 1, \ldots, s$, are restricted in various ways. (See Exercise 3.1.)