CHAPTER 9
The Multivariate t Distribution

If Z is a $\mathcal{N}(0, 1)$ variable and independent of S, where $v S^2$ has a chi-square distribution with v degrees of freedom, then the random variable $t = Z/S$ is called a Student's t variable with v degrees of freedom. The distribution of t can be found in elementary textbooks, and it plays a central role in statistical inference problems concerning the mean of a univariate normal distribution with unknown variance. The multivariate t distribution, defined below and studied in this chapter, is a multivariate generalization of Student's t distribution.

Let $R = (\rho_{ij})$ be an $n \times n$ symmetric matrix such that it is either positive definite or positive semidefinite and $\rho_{ii} = 1$ ($i = 1, \ldots, n$). Let $Z = (Z_1, \ldots, Z_n)'$ have an $\mathcal{N}(0, R)$ distribution, and let the univariate random variable S be such that (i) S is independent of Z, and (ii) $v S^2$ has a $\chi^2(v)$ distribution. Then a natural generalization of the Student's t variable is

$$t = (t_1, \ldots, t_n)' = \left(\frac{Z_1}{S}, \ldots, \frac{Z_n}{S}\right)' .$$

(9.0.1)

It is clear that the distribution of t involves only R and v. Furthermore, it follows that for $v \geq 3$ the correlation coefficient between t_i and t_j is just ρ_{ij} (see Remark 9.1.1). Thus the matrix R is the correlation matrix of t.

Remark 9.0.1. It should be pointed out that in addition to the random variable t defined in (9.0.1), there are other multivariate t variables studied in the literature for both theoretical and applied purposes. For example, another commonly used multivariate t variable is the one given in the following: For $j = 1, \ldots, N$, let $X_j = (X_{1j}, \ldots, X_{nj})'$ be independent $\mathcal{N}_n(0, \Sigma)$ variables. For

Y. L. Tong, *The Multivariate Normal Distribution*
© Springer-Verlag New York Inc. 1990
9. The Multivariate \(t \) Distribution

Let \(i = 1, \ldots, n \), let \(\bar{X}_i \) and \(V_i^2 \) be given by

\[
\bar{X}_i = \frac{1}{N} \sum_{j=1}^{N} X_{ij}, \quad V_i^2 = \frac{1}{N-1} \sum_{j=1}^{N} (X_{ij} - \bar{X}_i)^2, \tag{9.0.2}
\]

then define

\[
t* = \left(\frac{\sqrt{N} \bar{X}_1}{V_1}, \ldots, \frac{\sqrt{N} \bar{X}_n}{V_n} \right)'. \tag{9.0.3}
\]

This random variable is also called a multivariate \(t \) variable in the literature, and the marginal distribution of \(\sqrt{N} \bar{X}_i/V_i \) is Student's \(t \) with \(N - 1 \) degrees of freedom (\(i = 1, \ldots, n \)). To avoid possible confusion, only a random variable of the form in (9.0.1) will be called a multivariate \(t \) variable in this chapter, and its distribution will be called a multivariate \(t \) distribution.

Definition 9.0.1. The \(n \)-dimensional random variable \(t \) defined in (9.0.1) is called a multivariate \(t \) variable, and its distribution is called a multivariate \(t \) distribution with parameters \(R \) and \(v \), where \(R \) is the correlation matrix and \(v \) is the number of degrees of freedom of the distribution; in symbols, \(t \sim t(R, v) \).

The multivariate \(t \) distribution has been found useful in inference problems concerning the mean vector of a multivariate normal distribution. An example of application, dealing with simultaneous comparisons of \(n \) treatments with a control (Dunnett, 1955), is given below.

Example 9.0.1. For \(i = 0, 1, \ldots, n \) and \(j = 1, \ldots, N \), let \(X_{ij} \) denote the \(j \)th observation from the \(i \)th population (the zeroth population denotes the control population). Under the assumption that the \(X_{ij} \)'s are independent \(\mathcal{N}(\theta_i, \sigma^2) \) variables, where the \(\theta_i \)'s and \(\sigma^2 \) are unknown, we are interested in comparing the parameters

\[
\mu_i = \theta_i - \theta_0 \quad (i = 1, \ldots, n),
\]

simultaneously based on the sample means \(\bar{X}_i \) and the sample variances \(V_i^2 \) (\(i = 0, 1, \ldots, n \)) given in (9.0.2). Denote \(v = (n + 1)(N - 1) \),

\[
Y_i = \bar{X}_i - \bar{X}_o \quad (i = 1, \ldots, n), \quad S_0^2 = \sum_{i=0}^{n} \frac{V_i^2}{n + 1}, \tag{9.0.4}
\]

and consider the \(n \)-dimensional random variable

\[
Z = \frac{\sqrt{N}}{\sqrt{2\sigma}}(Y_1 - \mu_1, \ldots, Y_n - \mu_n)',
\]

which has an \(\mathcal{N}_n(0, R) \) distribution with \(\rho_{ij} = \frac{1}{2} (i \neq j) \). Let

\[
A_1 = \{ y : y \in \mathbb{R}^n, y_i \geq Y_i - dS_0 \text{ for } i = 1, \ldots, n \}, \tag{9.0.5}
\]

\[
A_2 = \{ y : y \in \mathbb{R}^n, |Y_i - y_i| \leq dS_0 \text{ for } i = 1, \ldots, n \} \tag{9.0.6}
\]