Lecture 17
Cauchy’s Integral Formula

In this lecture, we shall present Cauchy’s integral formula that expresses
the value of an analytic function at any point of a domain in terms of the
values on the boundary of this domain, and has numerous important applications. We shall also prove a result that paves the way for the Cauchy’s
integral formula for derivatives given in the next lecture.

Theorem 17.1 (Cauchy’s Integral Formula). Let \(\gamma \) be a
simple, closed, positively oriented contour. If \(f \) is analytic in some simply
connected domain \(S \) containing \(\gamma \) and \(z_0 \) is any point inside \(\gamma \), then

\[
f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \, dz.
\]

Proof. The function \(\frac{f(z)}{z - z_0} \) is analytic everywhere in \(S \) except at
the point \(z_0 \). Hence, in view of Theorem 16.1, the integral over \(\gamma \) is the same
as the integral over some small positively oriented circle \(\gamma_r : |z - z_0| = r \); i.e.,

\[
\int_{\gamma} \frac{f(z)}{z - z_0} \, dz = \int_{\gamma_r} \frac{f(z)}{z - z_0} \, dz.
\]

We write the right-hand side of the preceding equality as the sum of two
integrals as follows:

\[
\int_{\gamma_r} \frac{f(z)}{z - z_0} \, dz = \int_{\gamma_r} \frac{f(z_0)}{z - z_0} \, dz + \int_{\gamma_r} \frac{f(z) - f(z_0)}{z - z_0} \, dz.
\]

However, since from Example 16.1

\[
\int_{\gamma_r} \frac{f(z_0)}{z - z_0} \, dz = f(z_0) \int_{\gamma_r} \frac{dz}{z - z_0} = f(z_0) 2\pi i,
\]
Lecture 17

it follows that

$$\int_{\gamma} \frac{f(z)}{z - z_0} \, dz = f(z_0) \, 2\pi i + \int_{\gamma_r} \frac{f(z) - f(z_0)}{z - z_0} \, dz.$$

The first two terms in the equation above are independent of r, and hence the value of the last term does not change if we allow $r \to 0$; i.e.,

$$\int_{\gamma_r} \frac{f(z)}{z - z_0} \, dz = f(z_0) \, 2\pi i + \lim_{r \to 0^+} \int_{\gamma_r} \frac{f(z) - f(z_0)}{z - z_0} \, dz. \quad (17.2)$$

Let $M_r = \max\{|f(z) - f(z_0)| : z \in \gamma_r\}$. Since f is continuous, such a finite number M_r exists, and clearly, $M_r \to 0$ as $r \to 0$. Now, for z on γ_r, we have

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \left| \frac{f(z) - f(z_0)}{r} \right| \leq \frac{M_r}{r}.$$

Hence, from Theorem 13.1, we find

$$\left| \int_{\gamma_r} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| \leq \frac{M_r}{r} L(\gamma_r) = \frac{M_r}{r} 2\pi r = 2\pi M_r,$$

which implies that

$$\lim_{r \to 0^+} \int_{\gamma_r} \frac{f(z) - f(z_0)}{z - z_0} \, dz = 0.$$

Therefore, equation (17.2) reduces to

$$\int_{\gamma} \frac{f(z)}{z - z_0} \, dz = f(z_0) \, 2\pi i,$$

which is the same as (17.1).

Example 17.1. Compute the integral $\int_{\gamma} \frac{e^{2z} + \sin z}{z - \pi} \, dz$, where γ is the circle $|z - 2| = 2$ traversed once in the counterclockwise direction. Since the function $f(z) = e^{2z} + \sin z$ is analytic inside and on γ, and the point $z_0 = \pi$ lies inside γ, from (17.1) we have

$$\int_{\gamma} \frac{e^{2z} + \sin z}{z - \pi} \, dz = 2\pi \, f(\pi) = 2\pi e^{2\pi}.$$

Example 17.2. Compute the integral $\int_{\gamma} \frac{\cos z + \sin z}{z^2 - 9} \, dz$ along the contour given in Figure 17.2. Clearly, the integrand fails to be analytic at the points $z = \pm 3$. However, only $z = 3$ lies inside γ. If we write $(\cos z +