Chapter 5
Strongly Continuous Linear Semigroups

Suppose X is a Banach space. Here are some problems concerning the class of linear semigroups T which are strongly continuous and have the property that $|T(t)| \leq 1$, $t \geq 0$, that is, T is a strongly continuous semigroup of contractions (T is also called a nonexpansive semigroup). The contraction property makes our investigation a little easier but the general case of strongly continuous linear semigroups is actually an application of the contraction case. First we use a generator of T in the second sense:

$$A = \{(x, y) \in X^2 : y = \lim_{t \to 0^+} \frac{1}{t} (T(t)x - x)\}. \quad (5.1)$$

For each $\lambda > 0$ denote by I_λ the transformation so that

$$I_\lambda x = \frac{1}{\lambda} \int_0^\infty e^{-r/\lambda} T(r)x \, dr, \ x \in X. \quad (5.2)$$

Problem 54 Show that if $\lambda > 0$, then $|I_\lambda| \leq 1$.

Problem 55 Show that if $x \in X$, then

$$\lim_{\lambda \to 0^+} I_\lambda x = x.$$

Problem 56 Show that if $x \in X$, then $I_\lambda x \in D(A)$, the domain of A.

Problem 57 Show that if $\lambda > 0$ and $x \in X$, then

$$(I - \lambda A)I_\lambda x = x,$$

that is, $I - \lambda A$ is a left inverse of I_λ.

Problem 58 Show that if $x \in D(A)$, then

$$I_\lambda (I - \lambda A)x = x,$$

that is, $(I - \lambda A)$ is also a right inverse of I_λ.

Some help with this problem follows.

Problem 59 Suppose \(x \in D(A) \) and define \(h : [0, \infty) \to X \) as
\[
h(t) = T(t)x, \quad t \geq 0. \tag{5.3}
\]
Show that the right derivative \(h^+ \) of \(h \) exists in all of \([0, \infty)\) and \(h^+(t) = T(t)Ax, \quad t \geq 0 \). Show also that \(h^+ \) is continuous.

Problem 60 Show that for \(h \) as in Problem 59, \(h' \) exists on \([0, \infty)\).

Problem 61 Show that \(h \) in Problem 59 satisfies
\[
h'(t) = T(t)Ax, \quad t \geq 0,
\]
and
\[
h'(t) = Ah(t), \quad t \geq 0 \tag{5.4}
\]
provided that \(x \in D(A) \), the domain of \(A \).

Problem 62 Suppose that \(x \in X \) but \(x \) is not in \(D(A) \). Show that there is a sequence \(\{x_n\}_{n=1}^{\infty} \) of members of \(D(A) \), converging to \(x \) so that if \(c > 0 \), then
\[
\{T(\cdot)x_n\}_{n=1}^{\infty}
\]
converges uniformly to
\[
T(\cdot)x \tag{5.5}
\]
on \([0, c]\).

Definition 6 The expression in (5.5) is called a generalized solution of (5.4).

Definition 7 Suppose \(G \) is a transformation from a subset of \(X \) into \(X \). The statement that \(G \) is closed means that
\[
\{(x, Gx) : x \in D(G)\}
\]
is a closed subset of \(X \times X \).

Problem 63 Show that if \(\lambda \geq 0 \), then \((I - \lambda A)^{-1}\) is closed and also that \(A \) is closed.

Problem 64 Show that \(A \in L(X, X) \) if and only if \(D(A) = X \). (Use the closed graph theorem.)

Problem 65 Suppose \(\lambda > 0, \ x \in X \) and \(m, n \) are positive integers. Show that
\[
(I_{\lambda/n})^m x = \left(\frac{n}{\lambda}\right)^m \int_0^\infty \cdots \int_0^\infty e^{-n/\lambda(s_m + \cdots + s_1)} T(s_m + \cdots + s_1)x \ ds_m \cdots ds_1 = \left(\frac{n}{\lambda}\right)^m \int_0^\infty e^{-sn/\lambda} \frac{s^{m-1}}{(m-1)!} T(s)x \ ds.
\]