Chapter 4
Flux of a Vector Field

In this chapter we concentrate on aspects of vector calculus. A common physical application of this theory is the fluid flow problem of calculating the amount of fluid passing through a permeable surface. The abstract generalization of this leads us to the flux of a vector field through a regular 2-surface in \mathbb{R}^3. More precisely, let the vector field F in \mathbb{R}^3 represent the velocity vector field of a fluid. We immerse a permeable surface S in that fluid, and we are interested in the amount of fluid flow across the surface S per unit time. This is the flux integral of the vector field F across the surface S.