Rational Design of Stable Lyophilized Protein Formulations: Theory and Practice

John F. Carpenter1,2, Beyong S. Chang3, William Garzon-Rodriguez1,2, and Theodore W. Randolph1,4

INTRODUCTION

For ease of preparation and cost containment by the manufacturer, and ease of handling by the end user, an aqueous therapeutic protein formulation usually is preferred. However, with many proteins it is not possible—especially considering the time constraints for product development—to develop sufficiently stable aqueous formulations. Unacceptable denaturation and aggregation can be induced readily by the numerous stresses to which a protein in aqueous solution is sensitive; e.g., heating, agitation, freezing, pH changes, and exposure to interfaces or denaturants (Arakawa et al., 1993; Cleland et al., 1993; Brange, 2000; Bummer...
and Koppenol, 2000). Furthermore, even under conditions that thermodynamically greatly favor the native state of proteins, aggregation can arise during months of storage in aqueous solution (e.g., Gu et al., 1991; Arakawa et al., 1993; Chen et al., 1994; Volkin and Middaugh, 1996; Chang et al., 1996a). In addition, several chemical degradation pathways (e.g., hydrolysis and deamidation) are mediated by water. In aqueous formulations, the rates of these and other (e.g., oxidation) chemical degradation reactions can be unacceptably rapid on the time scale of storage (e.g., 18–24 months) for pharmaceutical products (Manning et al., 1989; Cleland et al., 1993; Goolcharran et al., 2000; Bummer and Koppenol, 2000).

In contrast, a properly lyophilized formulation can maintain adequate physical and chemical stability of the protein during shipping and long-term storage, even at ambient temperatures. As will be outlined in this chapter, developing stable lyophilized protein formulations should be a rational, straightforward process, which for most proteins should be rapid. With liquid formulation development, it may only be possible to obtain adequate protein stability after lengthy studies. Furthermore, sometimes there are conflicting conditions (e.g., pH) needed to slow sufficiently multiple degradation pathways in aqueous solution. Considering these issues plus the fact that formulation scientists now have to deal with numerous proteins and/or variants of a given protein, lyophilization should be considered as a primary mode for product development. Only if a parallel effort to develop an aqueous formulation is successful, will a final lyophilized product not be needed.

Rapid formulation development has important financial ramifications. A drug product has a finite patent life, during which time the company has an exclusive market. Considering that even a moderately successful drug product has annual sales of hundreds of millions of dollars, potentially millions of dollars in sales are lost for each day of delay in bringing a product to market. Unfortunately, there are often delays because the formulations designed during early stage development and clinical trials (e.g., frozen) were not adequate for the final product. With a rational approach to formulation development, pharmaceutical scientists and process engineers can minimize the risk of this problem and the time needed to obtain a successful, final formulation. The success of such efforts depends on frank, open communication between the groups involved. For example, it is critical that the formulation scientists learn from the process engineers the issues for large-scale lyophilization runs, which are usually conducted in units that do not have the capacity to match processing parameters obtained in a small-scale research lyophilizers.

Despite the best efforts of the scientists and engineers, all too often delays in formulation development arise because sufficient resources are not invested in product development. For example, sometimes, purchase of essential equipment