Wave Front Propagation for KPP-Type Equations

Mark Freidlin

1.1. INTRODUCTION

The following equation was considered in [15]:

\[
\frac{\partial u(t,x)}{\partial t} = \frac{D}{2} \frac{\partial^2 u}{\partial x^2} + f(u), \quad t > 0, \ x \in \mathbb{R},
\]

\[
\left\{ \begin{array}{ll}
0, & x < 0 \\
1, & x > 0.
\end{array} \right.
\]

Here \(D > 0 \) and \(f(u) = c(u)u \), where the function \(c(u) \) is supposed to be Lipschitz continuous, positive for \(u < 1 \) and negative for \(u > 1 \), and such that \(c = c(0) = \max_{0 \leq u \leq 1} c(u) \). Let us denote the class of such functions \(f(u) \) by \(F_1 \).

It is easy to see from (1.1.1) that \(u(t,x) \) for each \(t \geq 0 \) is a strictly monotone function decreasing from 1 as \(x \to -\infty \) to 0 as \(x \to \infty \). Thus there exists a unique \(m(t), t > 0, \) such that \(u(t,m(t)) = 1/2 \). It was proved in [15] that \(\lim_{t \to \infty} t^{-1} m(t) = \sqrt{2cD} \), and that \(u(t,m(t) + z) \to v(z) \) as \(t \to \infty \), where the
function \(v(z) \), \(-\infty < z < \infty \), is the solution of the problem

\[
\frac{D}{2} v''(z) + \alpha v'(z) + f(v(z)) = 0, \quad -\infty < z < \infty,
\]

\[
\lim_{z \to -\infty} v(z) = 0, \quad \lim_{z \to \infty} v(z) = 1, \quad v(0) = \frac{1}{2}
\]

(1.1.2)

for \(\alpha = \sqrt{2cD} \). Problem (1.1.2) is solvable for \(\alpha \geq \sqrt{2cD} \), and the solution is unique. Roughly speaking it means that the solution of problem (1.1.1) behaves for large \(t \) as a running wave \(v(x - \alpha t) \). It can be characterized by the shape \(v(z) \) and by the speed \(\alpha = \sqrt{2cD} \).

One can introduce the asymptotic speed independently of the shape:

The number \(\alpha^* \) is called the asymptotic speed as \(t \to \infty \) for the problem (1.1.1) if for any \(h > 0 \)

\[
\lim_{t \to \infty} \sup_{x > (\alpha^* + h)t} u(t, x) = 0, \quad \lim_{t \to \infty} \inf_{x < (\alpha^* - h)t} u(t, x) = 1.
\]

It follows from [15] that such \(\alpha^* \) exists and is equal to \(\sqrt{2cD} \). The notion of asymptotic speed can be introduced in a similar way in a more general situation.

Consider a tube \(R^1 \times G \), where \(G \) is a bounded domain in \(R^r \) with a smooth boundary \(\partial G \), and the following problem:

\[
\frac{\partial u(t, x, y)}{\partial t} = \frac{D}{2} \Delta_{x,y} u - b \frac{\partial u}{\partial x} + f(u), \quad t > 0, \ x \in R^1, \ y \in G
\]

\[
\frac{\partial u(t, x, y)}{\partial n} \bigg|_{t>0,x\in R^1,y\in \partial G} = 0, \quad u(0, x, y) = \chi^-(x).
\]

(1.1.3)

Here \(n = n(y) \) is the outward normal to \(\partial G \) at point \(y \in \partial G \); \(\Delta_{x,y} \) is the Laplacian in \(x \) and \(y \); \(f \in F_1 \) as before; \(D \) is positive.

As in the one-dimensional case \(\alpha^* \) is called the asymptotic speed as \(t \to \infty \) if for any \(h > 0 \)

\[
\lim_{t \to \infty} \sup_{x > (\alpha^* + h)t, y \in G \cup \partial G} u(t, x, y) = 0, \quad \lim_{t \to \infty} \inf_{x < (\alpha^* - h)t, y \in G \cup \partial G} u(t, x, y) = 1.
\]

Equation (1.1.3) describes the evolution of particles which diffuse with diffusivity \(D \) in the flow having velocity \(b \) and take part in the "chemical reaction" governed by the nonlinear term \(f(u) \). Of course, one cannot expect that some asymptotic speed will be established if \(D \) or \(b \) depends on \(x \) arbitrarily. Let \(D = \text{const} \) and \(b \) be independent of \(x \). If \(b = \text{const} \) then it follows from the results of [15] that the asymptotic speed for problem (1.1.3) is equal to \(\alpha^* = b + \sqrt{2cD} \). Now let the velocity of the flow \(b \) depend on the point of the cross section of the tube: \(b = b(y) \). In the linear case \(f(u) \equiv 0 \) one can check that

\[
\alpha^* = \bar{b} = \frac{1}{|G|} \int_G b(y) \, dy
\]

where \(|G| \) is the volume of the domain \(G \). The last statement is the result of averaging in the \(y \)-variables: the uniform distribution is the invariant measure for the diffusion governed by \((D/2)\Delta_y \) in \(G \) with the normal reflection on the boundary.