Wave Front Propagation for KPP-Type Equations

Mark Freidlin

1.1. INTRODUCTION

The following equation was considered in [15]:

\[
\frac{\partial u(t, x)}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u), \quad t > 0, \ x \in R^1,
\]

\[
u(0, x) = \chi^-(x) = \begin{cases}
1, & x \leq 0 \\
0, & x > 0.
\end{cases}
\] (1.1.1)

Here \(D > 0 \) and \(f(u) = c(u)u \), where the function \(c(u) \) is supposed to be Lipschitz continuous, positive for \(u < 1 \) and negative for \(u > 1 \), and such that \(c = c(0) = \max_{0 \leq u \leq 1} c(u) \). Let us denote the class of such functions \(f(u) \) by \(F_1 \).

It is easy to see from (1.1.1) that \(u(t, x) \) for each \(t \geq 0 \) is a strictly monotone function decreasing from 1 as \(x \to -\infty \) to 0 as \(x \to \infty \). Thus there exists a unique \(m(t), t > 0 \), such that \(u(t, m(t)) = 1/2 \). It was proved in [15] that \(\lim_{t \to \infty} t^{-1} m(t) = \sqrt{2cD} \), and that \(u(t, m(t) + z) \to v(z) \) as \(t \to \infty \), where the
function $v(z), -\infty < z < \infty$, is the solution of the problem

$$\frac{D}{2} v''(z) + \alpha v'(z) + f(v(z)) = 0, \quad -\infty < z < \infty,$$

$$\lim_{z \to \infty} v(z) = 0, \quad \lim_{z \to -\infty} v(z) = 1, \quad v(0) = \frac{1}{2} \quad (1.1.2)$$

for $\alpha = \sqrt{2cD}$. Problem (1.1.2) is solvable for $\alpha \geq \sqrt{2cD}$, and the solution is unique. Roughly speaking it means that the solution of problem (1.1.1) behaves for large t as a running wave $v(x - \alpha t)$. It can be characterized by the shape $v(z)$ and by the speed $\alpha = \sqrt{2cD}$.

One can introduce the asymptotic speed independently of the shape:

The number α^* is called the asymptotic speed as $t \to \infty$ for the problem (1.1.1) if for any $h > 0$

$$\lim_{t \to \infty} \sup_{x > (\alpha^* + h)t} u(t, x) = 0, \quad \lim_{t \to \infty} \inf_{x < (\alpha^* - h)t} u(t, x) = 1.$$

It follows from [15] that such α^* exists and is equal to $\sqrt{2cD}$. The notion of asymptotic speed can be introduced in a similar way in a more general situation.

Consider a tube $R^1 \times G$, where G is a bounded domain in R^r with a smooth boundary ∂G, and the following problem:

$$\frac{\partial u(t, x, y)}{\partial t} = \frac{D}{2} \Delta_{x, y} u - b \frac{\partial u}{\partial x} + f(u), \quad t > 0, \quad x \in R^1, \quad y \in G$$

$$\frac{\partial u(t, x, y)}{\partial n} \bigg|_{t > 0, x \in R^1, y \in \partial G} = 0, \quad u(0, x, y) = \chi^-(x). \quad (1.1.3)$$

Here $n = n(y)$ is the outward normal to ∂G at point $y \in \partial G$; $\Delta_{x, y}$ is the Laplacian in x and y; $f \in F_1$ as before; D is positive.

As in the one-dimensional case α^* is called the asymptotic speed as $t \to \infty$ if for any $h > 0$

$$\lim_{t \to \infty} \sup_{x > (\alpha^* + h)G \cup \partial G} u(t, x, y) = 0, \quad \lim_{t \to \infty} \inf_{x < (\alpha^* - h)G \cup \partial G} u(t, x, y) = 1.$$

Equation (1.1.3) describes the evolution of particles which diffuse with diffusivity D in the flow having velocity b and take part in the "chemical reaction" governed by the nonlinear term $f(u)$. Of course, one cannot expect that some asymptotic speed will be established if D or b depends on x arbitrarily. Let $D = \text{const}$ and b be independent of x. If $b = \text{const}$ then it follows from the results of [15] that the asymptotic speed for problem (1.1.3) is equal to $\alpha^* = b + \sqrt{2cD}$. Now let the velocity of the flow b depend on the point of the cross section of the tube: $b = b(y)$. In the linear case $f(u) \equiv 0$ one can check that

$$\alpha^* = \overline{b} = \frac{1}{|G|} \int_G b(y) \, dy$$

where $|G|$ is the volume of the domain G. The last statement is the result of averaging in the y-variables: the uniform distribution is the invariant measure for the diffusion governed by $(D/2)\Delta_y$ in G with the normal reflection on the boundary.