PROFESSOR EDWIN HASLAM, RECIPIENT OF THE 3rd TANNIN CONFERENCE AWARD

Herbert L. Hergert

901 Burdan Drive
Pottstown, Pennsylvania 19464
USA

1. SYNOPSIS OF PROFESSOR HASLAM'S CAREER

It is with sincere pleasure that we dedicate this volume, "Plant Polyphenols 2: Chemistry, Biology, Medicine, Ecology," to Professor Haslam who has been a beacon in the study of the chemistry and application of plant polyphenols. It is unimaginable that anyone who is active in this field or even has a mild interest would not be familiar with Professor Haslam’s seminal overviews, “Chemistry of Vegetable Tannins” and “Plant Polyphenols; Vegetable Tannins Revisited”. To this distinguished duo, a third volume has appeared this past year titled “Practical Polyphenolics—From Structure to Molecular Recognition, and Physiological Action”. Those of us present at the 2nd Tannin Conference held June 17-21, 1991, in Houghton, Michigan, will recall his overview of the chemistry of gallic acid derivatives at that meeting, so we were looking forward to his 1998 update in this new book.

Professor Haslam received B.Sc. and Ph.D. degrees from the University of Sheffield and a subsequent Ph.D. degree from Cambridge University. Between the years of 1957 and 1980, he served as Assistant Lecturer, Lecturer, Senior Lecturer, and Reader in the Department of Chemistry at the University of Sheffield. In 1980, he was appointed to a Personal Chair (ad hominem) in Chemistry, and in 1985, he became the Head of the Chemistry Department at the University of Sheffield. He has received a number of honors and awards during his career. Among these are the following:

1955 Turner Research Prize in Chemistry—University of Sheffield
1955–1957 Sir William Ramsay Memorial Research Fellowship, Emmanuel College, Cambridge
1975 Hugh Kelly Senior Research Fellowship (First Election), Rhodes University, Grahamstown, South Africa
1977 Tate and Lyle Prize and Award, Phytochemical Society of Europe
1984 Visiting Professor, University of the South Pacific, Suva, Fiji
1987 Proctor Memorial Lecturer, Society of Leather Trades Chemists
1996 Wolstenholme Lecturer, Society of Leather Trades Chemists

During his career, he has published more than 150 research papers (see bibliography) principally in the *Journals of the Royal Society of Chemistry, Tetrahedron*, and *Phytochemistry*. He has published six books, three of which have already been mentioned, and served as Editor of Volume 5, “Biological Compounds” in the six-volume series, *Comprehensive Organic Chemistry*. Although he has been “retired” for some time, a glance at his list of publications does not show any letup in his research activities. At a time when some of us have reached retirement age (including the writer) or are facing “downsizing,” the current American fad for supposedly improving the profitability of industry or academe, Professor Haslam serves as an excellent role model for not giving in to the social pressures to step aside on account of calendar age.

It is interesting to note that Haslam’s first published paper (coauthored with R.D. Haworth) was on the constitution of sesamolin, a bifuran lignan with methylenedioxy substituted aromatic rings. This compound is one of the constituents of sesame oil and can serve as a synergist for pyrethrum insecticides. Although not a tannin, the discipline involved in isolation and structural determination of this compound was a good prelude to Haslam’s subsequent work on the constituents of the gallotannins. From there, his work broadened to include the biosynthesis and interactions of plant polyphenols with proteins, carbohydrates, etc. Overall, Professor Haslam’s research has fallen into four broad categories.

- **Phenolic metabolism in plants.** This has involved studies of the structure, chemical properties, and biosynthesis of simple phenols such as hydroxycinnamoyl esters and glycosides, gallic acid and galloyl esters, piceatannol (a stilbene derivative), larixinol, catechins, and hydroquinone. This work included the taxonomic distribution, structure, chemical properties, conformation or shape and biosynthesis of the two principal classes of vegetable tannins, i.e., hydrolyzable tannins (mainly esters of gallic and hexahydroxydiphenic acid), and condensed tannins (polymers based on proanthocyanidins and, to a lesser extent, polyphenolic norlignans, stilbenes, etc).

- **Molecular recognition and interactions: phenols and polyphenols.** For the attendees of the 3rd Tannin Conference, this area of Professor Haslam’s work was probably of the greatest interest and importance. The means whereby simple and complex polyphenols engage in non-covalent