In this chapter we explore a series of detailed routing architectures to find which ones lead to the best FPGA area and speed [14]. The detailed routing architecture of an FPGA specifies the length of every wire in the FPGA, the type of switch used to make every connection, the switch block topology, the metal width and spacing of each routing wire, and several other related parameters. In the next section we more precisely define all the parameters determining an FPGA's detailed routing architecture, and explain why detailed routing architecture issues are so crucial in FPGA design. Section 7.2 then describes the experimental flow we use to evaluate different routing architectures.

In Sections 7.3 through 7.7 we employ this flow to explore several key detailed routing architecture issues. We begin in Section 7.3 by investigating the best switch block topology and best \(F_c \) values for FPGA architectures that include wires that span more than one logic block. We also determine the best routing wire length when all wires in the FPGA have the same length in Section 7.3. In Section 7.4 we investigate FPGAs that contain two different lengths of routing wires, and a mix of pass-transistor and tri-state buffer routing switches. In Section 7.5 we evaluate the utility of internally depopulating wire segments, and determine the best amount of depopulation. Section 7.6 examines the speed gains attainable by increasing the spacing between some or all of the routing wires. Finally, Section 7.7 provides an overview of all the architectures examined in this chapter, comparing the speed and area achieved by the best architectures against a routing architecture similar to that of the Xilinx XC4000X series FPGAs.
7.1 Motivation

Most circuit delay in FPGAs is due to routing delays, rather than logic block delays, and most of an FPGA's area is devoted to routing [1]. In many ways, then, detailed routing architecture is the key architectural issue in FPGAs. When we refer to the detailed routing architecture of an FPGA we are referring to the values of a very wide range of parameters, including:

- The number of wires, Fc, to which each logic block input pin or output pin can connect,
- The switch block topology (which defines which wires can connect at a switch block),
- The segmentation distribution; that is, the different lengths of wire segments in the FPGA, and the fraction of tracks in a channel that are composed of wires of each length,
- The switch-block internal population and connection-block internal population of each wire segment,
- The type of switch (pass transistor or tri-state buffer) used to connect each routing wire to other wires,
- the sizes of the transistors used to build the various programmable switches, and
- the metal width and spacing of the various routing wires.

Recall that definitions of all the parameters listed above were provided in Section 2.1.3, and Section 4.2.1 provided a new and more general definition of internal switch population. The first four parameters above are topological parameters that define the connectivity of the FPGA routing architecture; the last two parameters are purely electrical, and the type of switch used to make each connection is both a topological and an electrical parameter.

Every parameter listed above is important, and the choice of each involves balancing complex trade-offs and interactions with other parameters. For example, if one chooses a segmentation distribution with too many short wires, long connections will have to be constructed using several short wires connected in series, resulting in poor speed. If the segmentation distribution includes too many long wires, however, some short connections will be forced to use long wires, degrading speed and wasting area. Similarly, an architecture with too many or too few tri-state buffer routing switches will clearly be suboptimal. Pass transistors require less area, and they are faster than buffers for short connections, but connections that pass through many switches are better served by tri-state buffers. As well, the best mix of routing switches is dependent on the segmentation distribution. A segmentation distribution with many long