Testing for Primeness

In this chapter we consider how to find large primes for use in the secret codes described in Chapter I-15.

The primitive element theorem says: If \(p \) is prime, then there is some natural number \(a < p \) whose order mod \(p \) is \(p - 1 \), that is, \(a^{p-1} \equiv 1 \) (mod \(p \)) and no smaller positive power of \(a \) is congruent mod \(p \) to 1. The converse is

Proposition. Suppose \(q \) is a natural number \(> 2 \). If there is some \(a < q \) such that the order of \(a \) mod \(q \) is exactly \(q - 1 \), then \(q \) is a prime number.

Proof. If \(q \) is not prime, then \(\phi(q) \), the number of natural numbers less than \(q \) which are relatively prime to \(q \), is less than \(q - 1 \); if \(a < q \), then either \(a \) is not relatively prime to \(q \), hence no power of \(a \) is congruent to 1 mod \(q \), or \(a \) is relatively prime to \(q \), in which case, by Euler's theorem, its order mod \(q \) must divide \(\phi(q) < q - 1 \).

Thus: \(q \) is prime iff there is an element of order exactly \(q - 1 \) mod \(q \).

How, then, do we decide whether a given number \(q \) is prime? We have a negative test, from Fermat's theorem:

\((-\) If \(a^{q-1} \not\equiv 1 \) (mod \(q \)) for some \(a < q \), then \(q \) is not prime.

We have a positive test, from the proposition:

\((+) \) If for some \(a \) the order of \(a \) (mod \(q \)) is \(q - 1 \), then \(q \) is prime.

Unfortunately, test \((+)\) is very impractical. For while it is very easy, using the strategy of Section I-11D, to decide whether \(a^{q-1} \equiv 1 \) (mod \(q \))
for any \(a\) and \(q\), it is much harder to prove that the order of \(a\) is \(q - 1\) (mod \(q\)). It has to be shown that for any prime \(p\) dividing \(q - 1\), \(a^{(q-1)/p} \equiv 1\) (mod \(q\)). And to do that, one must be able to factor \(q - 1\), a problem of almost the same size as that of factoring \(q\).

Here is a small example. Let \(q = 11213\). After checking that 11213 is not divisible by 2, 3, 5, 7, 11, and a few other small primes, we suspect that 11213 might be prime. We compute \(2^{11212} \mod 11213\) and verify that it is \(\equiv 1\) (mod 11213). To apply test (+) we must find the order of 2 mod 11213. So we have to factor 11212. Now 11212 = 2^2 \cdot 2803. Is 2803 prime? This problem is not much less difficult than the original problem. It turns out that 2803 is prime, and that neither \(2^{11212/2}\) nor \(2^{11212/2803}\) is congruent to 1 mod 11213; hence 2 is a primitive element mod 11213 and 11213 is prime.

If we took, instead of 11213, some 40-digit number \(q\), then to use (+) we would have to factor \(q - 1\), and chances are good that after factoring out all the obvious small prime factors one would be left with a factor of \(q - 1\) containing 35 or more digits and which we would have to factor—almost as hard a problem as factoring \(q\) itself.

So test (+) is not very helpful.

We might ask: Suppose we know only that \(q\) is a number for which \(2^q - 1 \equiv 1\) (mod \(q\)); how likely is it that \(q\) is prime?

The answer appears to be: excellent.

Call a number \(q\) fermatian if \(2^q - 1 \equiv 1\) (mod \(q\)).

Call a number \(q\) a pseudoprime if for all integers \(a\), \(a^q \equiv a\) (mod \(q\)).

Any prime is a pseudoprime. Any odd pseudoprime is fermatian: for if \(2^q \equiv 2\) (mod \(q\)) and \(q\) is odd, we can cancel a factor of 2 from each side.

It turns out that there are infinitely many fermatian numbers which are not primes.

Proposition. If \(f\) is a composite fermatian number, then so is \(2^f - 1\).

Proof. Suppose \(f = ab\), \(a > 1\), \(b > 1\). Let \(g = 2^f - 1\). Then \(g\) is composite, for

\[
2^{ab} - 1 = (2^a - 1)(1 + 2^a + \cdots + 2^{a(b-1)}).
\]

\((*)\)

Suppose \(2^f - 1 \equiv 1\) (mod \(f\)). We show \(2^{g-1} \equiv 1\) (mod \(g\)), that is, \(2^f - 1\) divides \(2^{g-1} - 1\). By \((*)\) it suffices to show that \(f\) divides \(g - 1\). Now since \(2^{f-1} \equiv 1\) (mod \(f\)), \(f\) divides \(2^{f-1} - 1\). Since \(g - 1 = 2^f - 1 - 1 = 2(2^{f-1} - 1)\), \(f\) divides \(g - 1\). So \(g\) is a composite fermatian number. \(\square\)

Despite this result, fermatians which are not prime are scarce, and pseudoprimes are even scarcer. There are 168 primes < 1000, but only three composite fermatians—341, 561 (the only composite pseudoprime) and 645; there are, according to D. H. Lehmer and P. Poulet, 5,761,455 primes under 100,000,000, but only 2043 composite fermatians and 252 composite pseudoprimes.