ORDER PARAMETERS AND CONFORMATION OF NEMATIC \(p \)-METHOXYBENZYLIDENE-
\(p \)-n-BUTYLANILINE (MBBA) BY NMR STUDIES OF SOME SPECIFICALLY
DEUTERATED DERIVATIVES

Y. S. Lee, Y. Y. Hsu and D. Dolphin

Department of Chemistry, Harvard University

Cambridge, Massachusetts 02138

INTRODUCTION

It is known that nematic liquids have a well defined degree of
order.\(^1\) The order parameter, \(S \), which describes the fluctuation
of the molecular axis from the direction of preferential orientation
of the molecule, is given by

\[
S = \frac{1}{2} (3\cos^2 \xi - 1)
\]

(1)

where \(\xi \) is the angle between the long axis of the molecule and the
direction of its preferential orientation in the nematic phase.

For complete order, \(\cos^2 \xi = 1 \) and \(S=1 \) as in the case of a
crystal, whereas for complete disorder, \(\cos^2 \xi = 1/3 \) and \(S=0 \),
representing an isotropic liquid. Thus the order parameter of a
nematic will lie between 0 and 1 in a fluid. When a molecule is
aligned in a magnetic field, \(H_o \), each nuclear magnetic dipole will
produce an additional field at neighboring nuclei, the component
of which along the direction of \(H_o \) together with \(H_o \) will result
in a total effective field\(^2\)

\[
H_{\text{eff}} = H_o \pm \alpha (3\cos^2 \theta - 1)
\]

(2)

357

J. F. Johnson et al. (eds.), *Liquid Crystals and Ordered Fluids*
© Plenum Press, New York 1974
where α is an interaction field parameter and θ is the angle between H_0 and the line joining the two interacting nuclei.

Equation (2) predicts a pair of resonance lines symmetrically disposed about the field value at which a single resonance line would occur in the absence of the additional field due to the neighboring nuclei. The separation, δH, of this doublet is thus

$$\delta H = 2 \left| H_{\text{eff}} - H_0 \right| = 2\alpha(3\cos^2 \theta - 1) \quad (3)$$

For proton dipole-dipole interaction, $\alpha = 3/2 \mu_H r^{-3}$, where μ_H is the proton nuclear moment (1.42×10^{-23} erg/gauss) and r is the distance between the two interacting protons. Thus, from equation (3), the separation of the doublet as a result of the magnetic dipole-dipole interaction of a pair of protons H_j and H_k held in a rigid orientation is

$$\delta H_{jk} = 3 \mu_H r^{-3}_{jk} (3\cos^2 \Theta_{jk} - 1) \quad (4)$$

Molecules of a nematic liquid in a magnetic field of a few thousand gauss are aligned with their long axes approximately parallel to the field. The angular-dependence term in equation (4) for a nematic liquid should be replaced by a mean value for the motions involved. Therefore,

$$\delta H_{jk} = 3 \mu_H r^{-3}_{jk} <3\cos^2 \Theta_{jk} - 1> \quad (5)$$

This angular-dependence term can be evaluated by considering all possible ordering factors in the molecule with reference to the direction of the applied magnetic field.

Consider a molecule of MBBA-d_{17} lying arbitrarily with its long axis OL making an angle ζ with the preferred axis OP in a magnetic field H_0, as represented in Figure 1. The thermodynamic average term can be represented by a number of orientation terms:

$$<3\cos^2 \Theta_{jk} - 1> = (3/2 \cos^2 \gamma - 1/2) (3/2 \cos^2 \phi - 1/2) \quad (6)$$

$$\times (3/2 \cos^2 \xi - 1/2) (3 \cos^2 \Theta_o - 1)$$

where Θ_o is the angle between the applied magnetic field and the preferred orientation of the molecule, γ is the angle between the