GUINEA PIG ALVEOLAR MACROPHAGES PROBABLY KILL M. TUBERCULOSIS H37Rv AND H37Ra IN VIVO BY PRODUCING HYDROGEN PEROXIDE

P.S. Jackett, P.W. Andrew, V.R. Aber and D.B. Lowrie

MRC Unit for Laboratory Studies of Tuberculosis
Royal Postgraduate Medical School
London W12 OHS, England

The major phagocytic cell involved in host resistance to Mycobacterium tuberculosis infection is probably the alveolar macrophage. It seems likely that macrophages, at least in the immune animal, can kill M. tuberculosis (1) and this might involve the production of hydrogen peroxide (H_2O_2) by the macrophages. Macrophages release H_2O_2 in vitro when exposed to phagocytic stimuli or certain soluble agents that perturb the plasma membrane (8,9). H_2O_2 can kill M. tuberculosis and resistance to H_2O_2 in vitro correlates with high virulence in the guinea pig (11,5).

To assess the role of macrophage H_2O_2 in killing M. tuberculosis in guinea pig lungs we have compared the fate of parent M. tuberculosis strains and H_2O_2-susceptible variant strains during the first 6 days after i.v. infection of normal and BCG-vaccinated guinea pigs. In parallel we have examined the H_2O_2 releasing capacity of the macrophages recoverable by lavage from the infected lungs. The studies on bacterial H_2O_2 susceptibility and viability in the lung formed part of a recent detailed report (6).

In the basic procedure guinea pigs were vaccinated with streptomycin-resistant BCG 5 weeks (i.p., 3×10^7 colony-forming units (c.f.u.)) and 1 week (i.m., 1×10^7 c.f.u.) before challenge infection. Then normal and vaccinated animals were infected i.v. with 1×10^7 c.f.u. of one of the bacterial strains. At 3 h, 3 days and 6 days after infection counts of c.f.u. were made from whole lung homogenates or, in separate experiments, alveolar macrophages were obtained by pulmonary lavage with medium 199 for studies of H_2O_2 release. Macrophages that adhered to plastic
petri dishes after incubation for 1 h were rinsed and assayed for
H₂O₂ release, which was measured fluorimetrically as horse radish
peroxidase-dependent oxidation of p-hydroxyphenylacetic acid (2).
Incubation was for 1 h with opsonised ³H-labelled H37Ra or for
15 min with phorbol myristate acetate (PMA, 1 μg/0.1 ml) as a
stimulus.

The fates of M. tuberculosis strains H37Rv, H37Ra and their
isoniazid-resistant, catalase-negative mutants H37RvHR and H37RaHR
in the lungs of normal and vaccinated guinea pigs are shown in
Fig. 1. The parent strains were equally resistant and the mutant
strains equally susceptible to H₂O₂ in vitro and in the lungs.
The parent strains fared better than the mutants. In the normal
animal the effect of the bacterial mutation to H₂O₂ susceptibility
was the same in the first and second 3 day period, suggesting that
H₂O₂ availability was the same in the two periods. In contrast,
in the vaccinated animal the effect of H₂O₂ susceptibility was
greater in the second period, suggesting an increasing availability
of H₂O₂. During the first period the effect of H₂O₂ susceptibility
was expressed equally in normal and vaccinated animals, suggesting
equal initial availability of H₂O₂ in normal and vaccinated
animals.

The number of cells obtained by pulmonary lavage of H37Ra–
infected guinea pigs approximately doubled from 3 h to 6 days
after infection, and the proportion of mononuclear cells increased
from 57 to 92% in normal animals, and from 80 to 97% in vaccinated
animals. The cells obtained contained 0.1% of the viable bacteria
in the lungs at 3 h and this increased to about 2.5% by 6 days.

The capacity of the adherent mononuclear cells (macrophages)
to release H₂O₂ with and without phagocytic stimulation in vitro
is shown in Fig. 2. Vaccination did not affect the release of
H₂O₂ from macrophages that were removed from the lungs 3 h after
intravenous infection and tested in vitro with or without
phagocytic stimulation. These observations were consistent with
the evidence that H₂O₂-mediated killing of tubercle bacilli was
the same in normal and vaccinated animals at this early stage of
infection. Macrophages that were removed from vaccinated animals
on the third and sixth days after infection released progressively
more H₂O₂ than macrophages that were removed at 3 h. This
increase was not seen with macrophages from the infected normal
animals. Again, this observation was consistent with the
evidence that H₂O₂-mediated killing of tubercle bacilli in vivo
increased with the onset of acquired immunity. Phagocytosis of
opsonised H37Ra in vitro enhanced H₂O₂ release. Figure 2b shows
that the increment per bacterium taken up by the cells increased
with time elapsed after intravenous infection, and that the
increase in responsiveness occurred faster in vaccinated animals
than in normal animals. The increase in responsiveness was