5. Binary Transition Metal Oxides

5.a. General

Oxides of Rare Earth, Titanium, Zirconium, Hafnium, Niobium, and Tantalum
Allen M. Alper, ed.
Refractory Materials, Vol. 5, Part 2

Structural, electrical, and magnetic properties of vacancy stabilized cubic TiO and VO
M. D. Banus and T. B. Reed
The Chemistry of Extended Defects in Non-Metallic Solids,

Theory of Mott transition
M. Cyrot

Some reactions of tungsten (VI) oxide and molybdenum (VI) oxide with liquid sulfur
John W. Goodrum

In situ generation of species for crystal growth in solution
Transition-metal oxides, amorphous semiconductors, semiconducting glasses, Ovshinsky effect, and other switching (memory) materials
(a literature review)
John T. Milek
(Hughes Aircraft Co., Culver City, Calif.), Interim Report No. 72 (Sept. 1970)
131 refs.

Preparation and some characteristics of self-supporting 300 to 2500-Å oxide films
A. Aladjem and D. G. Brandon
International Conference on Thin Films, Boston, Mass., CONF-690435
Ta, Nb, W, Ti, and Zr oxide films

Arc techniques in the preparation of inorganic materials

Mixed oxides prepared with an induction plasma torch. Part 2. Chromia/titania
T. I. Barry, R. K. Bayliss, and L. A. Lay

Growing single crystals of refractory oxides
V. K. Yanovskii

Electrolytic separation of transition-metal oxide crystals
W. Kunnmann, A. Ferretti, R. J. Arnott, and D. B. Rogers
U. S. Patent 3,382,161 (May 7, 1968)

Crystallization of titanium, zirconium, and hafnium oxides and some titanate and zirconate compounds under hydrothermal conditions
V. A. Kuznetsov
J. Crystal Growth, 3:405-410 (1968)

Aspects on the problems of synthesis and structure of some oxide or oxide-like compounds formed by the transition elements in the groups IV, V, and VI of the periodic table
Sten Andersson
Arkiv for Kemi, 26:521 (1967)
Review: 103 refs.

A study of the anodic oxides of titanium, niobium, and tantalum: growth mechanism, interfacial phenomena, contribution to the knowledge of their structure
Francois Kover

Cubic carbides, nitrides, and oxides of the first transition-metal series
F. Petru and V. Brozek
Pokroky Praskove Met. VUPM, No. 4, pp. 3-27 (1967)
5. Binary Transition Metal Oxides

Chemical structure, atomic constants, homogeneity, and
electron structure

Mass transport in oxides
J. B. Wachtman, Jr., and A. D. Franklin
(National Bureau of Standards, Wash., D. C.), NBS-SP-296
(August 1968), 213 pp.
Presented at the Symposium held at Gaithersburg, Md., Oct.
22–25, 1967

Growth and some mechanical properties of fila­
mentary single crystals (whiskers) of NiO, WO₃,
W₂O₅, W₁₈O₄₄, and WO₃
I. Ahmad and G. P. Capsimallis
Crystal Growth (H. Steffen Peiser, ed.), Pergamon Press,
Proceedings of an International Conference on Crystal Growth,
Boston (June 20–24, 1966)

Crystal growth by chemical transport reactions.
IV. New results on the growth of binary,
ternary and mixed-crystal chalcogenides
R. Nitsche
Crystal Growth (H. Steffen Peiser, ed.), Pergamon Press,
Proceedings of an International Conference on Crystal Growth,
Boston (June 20–24, 1966)

Crystal growth techniques
E. A. D. White
GEC Journal, 31:43–53 (1964)

The structure of anodic films – I. An electron
diffraction examination of the products of anodic
oxidation on tantalum, niobium, and zirconium
F. H. G. Draper and J. Harvey
Acta Met., 11:873 (1963)

The growth of oxide single crystals from the
fluxed melt
E. A. D. White
Technique of Inorganic Chemistry, Vol. IV (Hans B. Jonassen
and Arnold Weissberger, eds.), Interscience Publishers,
New York (1965), p. 31

Current Information on the Refractory Metals
C. E. King
Contract AF33(657)–11214, AD-436333; ERR-FW-049A (Dec.
1, 1962), 80 pp.

Halides, oxides, and sulfides of the transition
metal
F. J. Morin

Beobachtung von Umwandlungs- und Oxydations­
vorgängen im Elektronen–Emissions–Mikroskop
H. Duker

5.b. Material Preparation and Crystal Growth

5.b.1. Group IV

5.b.1.a. Titanium

Growth of the intermediate oxides of titanium
from borate fluxes under controlled oxygen
fugacities
Robert F. Bartholomew and William B. White

Mechanism of heterogeneous deposition of thin­
film rutile
R. N. Ghoshtagore

Growth characteristics of rutile film by chemi­
cal vapor deposition
R. N. Ghoshtagore and A. J. Noreika

Preparation and characterization of submicron
hafnium oxide
K. S. Mazdyasni, L. M. Brown

Plasma-grown rutile single crystals and their
distinctive properties
J. D. Chase and L. J. Van Ruyven

Reduction of TiO₂ powders and rutile single
crystals
D. M. Compton and T. E. Firle

Formation and nature of radical species in the
oxidation of precipitated titanium dioxide
R. D. Iyengar and R. Kellermann

Stabilization of amorphous films of titanium
oxide
A. I. Korobov, E. V. Semenova, N. V. Troitskaya, and B. D.
Galkin

Evaporation of TiO₂
G. A. Semenov

Crystal growth from amorphous phase in thin
films
M. Shiojiri, H. Morikawa, and E. Suito

Influence de la pression d'oxygène sur la tem­
péature de solidification de certains oxydes des
éléments de transition
Jean-Pierre Coutures and Marc Foex

Chemical-vapor deposition of thin-film dielec­
trics
D. R. Harbison and H. L. Taylor
(Texas Univ., Electronics Research Center), Grants AF–
674 020 (July 1968), 7 pp.

A study of the phase diagrams and reaction of
titanium and zirconium with oxygen
I. I. Kornilov, V. V. Glazova, and E. M. Kenina
Diagrammy Sostoyaniya Metallicheskikh Sistem (E. M. Savit­
skii, ed.), Moscow, Izdatel'stvo Nauka (1968), pp. 145–153

A study of the phase diagrams and reaction of
titanium and zirconium with oxygen
M. S. Model
Diagrammy Sostoyaniya Metallicheskikh Sistem (E. M. Savit­
skii, ed.), Moscow, Izdatel'stvo Nauka (1968), pp. 164–166