SECTION XV
Property S and Uniformly Locally Connected Sets

Definition. A set M in a metric space is said to have *property S* if and only if for every $\varepsilon > 0$, M is the union of a finite number of connected sets, each of diameter less than ε.

Definition. A set M, also in a metric space, is said to be *uniformly locally connected* if and only if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that any pair of points x, y of M with $\rho(x, y) < \delta$ lie together in a connected subset of M of diameter less than ε.

EXERCISES XV.

1. Prove that if M has property S, so also has each set M_0 satisfying the relation $M \subset M_0 \subset \text{Cl}(M)$.

 For the following exercises, consider the diagram:

 ![Diagram](local_connectedness_property_S)

 2. Prove the indicated implications.

 3. Decide which of the implications are reversible.

 Validate your conclusions with proofs or counterexamples.
1. Prove that if \(M \) has property \(S \), so also has each set \(M_0 \) satisfying the relation \(M \subset M_0 \subset \text{Cl}(M) \).

We first note that \(\text{diam } M = \text{diam } \text{Cl}(M) \). Since \(M \subset \text{Cl}(M) \), \(\text{diam } M \leq \text{diam } \text{Cl}(M) \). Let \(\varepsilon > 0 \) be given, and let \(x, y \in \text{Cl}(M) \). Then there exist points \(x', y' \in M \) such that \(\rho(x,x') < \varepsilon/2 \) and \(\rho(y,y') < \varepsilon/2 \). Then

\[
\rho(x,y) \leq \rho(x,x') + \rho(x',y') + \rho(y',y) \leq \varepsilon + \text{diam } M
\]

Since \(x \) and \(y \) were arbitrary, as was \(\varepsilon \), we have \(\text{diam } \text{Cl}(M) \leq \text{diam } M \).

Now suppose \(\varepsilon > 0 \) is given and \(M = \bigcup M_i \), where each \(M_i \) is connected and has diameter less than \(\varepsilon \). Then \(M_0 = \bigcup \text{Cl}(M_i) \cap M_0 \), where \(\text{Cl}(M_i) \cap M_0 \) is connected for each \(i \) (since \(M_i \subset \text{Cl}(M_i) \cap M_0 \subset \text{Cl}(M_i) \)) and \(\text{diam } \text{Cl}(M_i) \cap M_0 \) is less than \(\varepsilon \). Hence \(M_0 \) has property \(S \).

2. Prove the indicated implications.

(a) Property \(S \Rightarrow \) local connectedness. Let \(M \) be a set in a metric space with property \(S \); let \(\varepsilon > 0 \) be given, and choose \(p \in M \) with \(\varepsilon \)-sphere centered at \(p \). Then \(M = \bigcup M_i \), where each \(M_i \) is connected and has diameter less than \(\varepsilon/2 \). If \(K \) is the union of all \(M_i \)’s satisfying \(p \in \text{Cl}(M) \), then \(K \) is connected. Also, if \(x, y \in K \), then \(\rho(x,y) \leq \rho(x,p) + \rho(p,y) \), and since \(x \in M_i \), \(y \in M_j \), and \(p \in \text{Cl}(M_i) \cap \text{Cl}(M_j) \) for some \(i \) and \(j \), we have \(\rho(x,y) < \varepsilon/2 + \varepsilon/2 = \varepsilon \). Thus the diameter of \(K \) is less than \(\varepsilon \). Since \(p \) cannot be a limit point of \(K \), there is an open set \(V \) containing \(p \) and completely contained in \(K \). Then the open set \(U \setminus V \) satisfies \(p \in U \setminus V = U \) and \((U \setminus V) \cap M = K \), where \(K \) is a connected subset of \(U \). Hence \(M \) is locally connected.

(b) Local connectedness, compactness \(\Rightarrow \) uniform local connectedness. Let \(M \) be compact and locally connected in a metric space, and let \(\varepsilon > 0 \) be given. We can cover \(M \) with regions in \(M \) of diameter less than \(\varepsilon/2 \), so that using the compactness of \(M \), we have \(M = \bigcup R_j \), where each \(R_j \) is open in \(M \), is connected, and has diameter less than \(\varepsilon/2 \). For each pair \(R_i, R_j \) satisfying \(\text{Cl}(R_i) \cap \text{Cl}(R_j) \neq \emptyset \), let \(\delta \geq \rho(R_i,R_j) \), so that each \(\delta \geq 0 \). Define \(\delta \) by \(\delta = \min \{ \delta_{ij} \} \) if \(\{ \delta_{ij} \} \neq \emptyset \); otherwise, \(\delta = \text{diam } M \). Now choose \(x, y \in M \) such that \(\rho(x,y) < \delta \). Then for some \(i \) and \(j \), we have \(x \in \text{Cl}(R_i) \), \(y \in \text{Cl}(R_j) \), where \(R_i \cap R_j \neq \emptyset \). The set \(\text{Cl}(R_i) \cup \text{Cl}(R_j) \) then has the properties of being connected, containing \(x \) and \(y \), and having diameter less than \(\varepsilon \). Hence \(M \) is uniformly locally connected.

(c) Uniform local connectedness, conditional compactness \(\Rightarrow \) property \(S \). Let \(M \) be a uniformly locally connected, conditionally compact set in a metric space, and let \(\varepsilon > 0 \) be given. Then there exists a \(\delta > 0 \) such that if \(\rho(x,y) < \delta \), then \(x \) and \(y \) lie in a connected subset of diameter less than \(\varepsilon/2 \). Since \(\text{Cl}(M) \) must be compact, we know that \(\text{Cl}(M) \) is separable, and hence so also is \(M \). Let \(P = \{ p_i \} \) be a countable dense set in \(M \). Define, for each \(n \), the set \(R_n \) to be the set of all those points of \(M \) which lie together with \(p_n \) in a connected set of diameter less than \(\varepsilon/2 \). Then \(R_n \) is connected and has diameter less than \(\varepsilon \). We claim that \(M = \bigcup R_n \) for some \(N \). Suppose not; then there exists an infinite subsequence \(\{ p_{n_i} \} \) of \(\{ p_i \} \) such that for each \(i \), \(p_{n_i} \) is not contained in \(\bigcup_{i=1}^{n_i-1} R_n \). Since \(M \) is conditionally compact, \(\{ p_{n_i} \} \) has a limit point \(p \). Then for some \(n_i \) and \(n_j \) \((i > j) \), \(\rho(p_{n_i}, p_{n_j}) < \delta \), so that \(p_{n_j} \in R_{n_i} \subset \bigcup_{i=1}^{n_i-1} R_n \). But this contradicts the construction of \(\{ p_{n_i} \} \). Hence \(M = \bigcup R_i \) for some \(N \), and \(M \) has property \(S \).