Purification and Biological Activities of Isoforms of Human FSH

P.G. STANTON, D.M. ROBERTSON, P.G. BURGON, B. WHITE, AND M.T.W. HEARN

It is known that pituitary FSH, LH, and TSH are heterogeneous, existing as families of isoforms with respect to isoelectric point (pI), circulating half-life, in vitro and in vivo activities (for recent review, see [1]). To date, however, no systematic study has been undertaken to purify and characterize these isoforms with a view to establishing the biochemical basis for these differences. To this end, we have utilized a novel method exploiting the differences in charge-based protein separation between isoelectrofocusing and ion exchange chromatography for the purification to homogeneity of the isoforms of human pituitary FSH.

Materials and Methods

The purification procedure was based on a previously described method (2). Frozen human pituitaries supplied by the Human Pituitary Advisory Committee (HPAC, Canberra, Australia) were minced and homogenized in 50-mM phosphate buffer (pH 7.0), and a high-speed supernatant was prepared (100,000 g × 1 h at 4°C). The supernatant was applied to a gel filtration column (Sephacryl S200, Pharmacia, Uppsala, Sweden, 100 × 5 cm) in 50-mM ammonium acetate (pH 7.0), and the FSH radioreceptor active fractions were pooled and lyophilized.

Preparative Isoelectrofocusing (IEF)

The sample (400 mg dissolved in water containing 300-μM EDTA, 1.1-μM pepstatin, 1.3-μM leupeptin, and 0.2-μM phenylmethylsulphonylfluoride) was electrofocused in a 440-mL sucrose density gradient column (LKB, Bromma, Sweden) using carrier ampholytes (1% Ampholines, LKB) in the pH range from 3.5 to 10 for 17–18 h at 2000 V or 30 W at 4°C. The gradient
was eluted at 100 mL/h and 1-mL fractions were collected. The pH was determined in every 5th tube. Phosphate buffer (pH 7.0) (0.5 mL, 0.3 M) was added to neutralize the pH.

High-Performance Liquid Chromatography

An FPLC (Pharmacia) system was used with a Mono Q anion exchange (HPIEX) column (HR5/5, 5 × 0.5 cm). The sample (50–60 mL) was sequentially fractionated with (a) a 57-min 0- to 342-mM NaCl gradient in 20-mM piperazine (pH 9.60) and 0.015% Brij-35 and (b) a 34-min 0- to 300-mM NaCl gradient in piperazine buffer (pH 6.0) at 1 mL/min at 20°C–22°C.

A TSK G3000SW column (60 × 0.75 cm, Toya Soda Co.) in 20-mM Tris buffer, 150-mM NaCl (pH 7.5), and 0.015% Brij-35 was employed at a flow rate of 0.4 mL/min. For SDS-PAGE, samples were reduced in dithiothreitol, electrophoresed in 16% gels using the method of Laemmli (3), and silver stained. Samples for amino acid analysis were hydrolyzed in vacuo in 6-M HCl, 0.2% phenol (22 h, 110°C) and analyzed by the Picotag method (Millipore/Waters, MA, USA).

FSH Radioreceptor Assay (RRA) and FSH In Vitro Bioassays

The FSH-RRA method of Cheng (4) was employed using calf testis membranes as the receptor source, the first IS for FSH (83/575) as standard, and iodinated human FSH isoform (pl 4.25) as tracer. The binding of tracer to an excess of membrane was 65%. A membrane dilution giving 25% binding with nonspecific binding of 1.5%–2% was used. Parallelism of logit log-dose-transformed dose-response lines was observed between preparations and standard. The between-assay variation was 7.8% (n = 6). The within-assay variation, based on the mean index of precision, was 0.048.

The FSH in vitro bioassay method of Van Damme (5) was used based on the FSH-induced aromatization of 19-hydroxyandrostenedione by immature rat Sertoli cells (Sc) in culture. All samples were assayed in the one assay. The within-assay variation, based on the mean index of precision, was 0.090.

Results

Human pituitary high-speed supernatant preparations were sequentially purified by gel filtration on Sephacryl S200, preparative isoelectrofocusing, 2 anion exchange chromatographic steps, and a final gel filtration HPLC chromatographic step (Figs. 32.1a–32.1d). Two of the FSH radioreceptor active regions (region A, pH 3.76–3.97; and region B, pH 4.07–4.34) from the preparative IEF were chosen for further processing. Following HPIEX at pH 9.6 and pH 6.0, regions A and B were further resolved into 3 isoforms