MEASUREMENT OF \(p\bar{p} \) CROSS-SECTIONS AT LOW \(\bar{p} \) MOMENTA

Presented by R. Ransome
W. Brückner, H. Döbbeling, J. Ciborowski,
S. Majewski, B. Povh, R. Ransome,
M. Treichel and Th. Walcher
Max-Planck Institut für Kernphysik, and Physikalisches
Institut der Universität, Heidelberg, Fed. Rep. Germany

In this paper the progress and physics objectives of LEAR experiment 173 is reported.

We propose to measure \(p\bar{p} \) elastic and charge exchange (CEX) differential cross-sections over the full angular range, the \(p\bar{p} \) annihilation cross-section, and, via the optical theorem, the total cross-section. The momentum range of 700 MeV/c to 200 MeV/c (230 MeV to 21 MeV) will be covered. We hope to extend the measurement to 130 MeV/c (5 MeV) with a slightly different detector assembly, as will be discussed later.

By means of these measurements, we wish to study especially the following aspects of the \(p\bar{p} \) interaction: the energy dependence of the partial cross-sections; the relative size of \(T = 0 \) and \(T = 1 \) contributions; and the so-called S-meson region.

The energy dependence of the partial cross-sections is unknown below about 300 MeV/c (with the exception of a few points with poor statistics between 200 and 300 MeV/c). In particular, the region of pure s-wave scattering, which has proved so useful in understanding the nucleon-nucleon interaction, is completely unmeasured. Although even our lowest projected measurements at 130 MeV/c will probably still contain a few percent p-wave scattering, the region between 100 MeV/c and 200 MeV/c will be dominated by s-wave scattering.
Measurement of both the elastic and CEX differential cross-sections gives an indication of the relative sizes of the $T = 0$ and $T = 1$ contributions, since the elastic scattering amplitude is proportional to $|T_0 + T_1|$, whilst the CEX amplitude is proportional to $|T_0 - T_1|$. It should be noted here that both T_0 and T_1 are complex and the measured quantities are proportional to the moduli squared, so a unique determination of the amplitudes is not possible with only the differential cross-section measurements. Despite this, some information can still be gleaned from a comparison of the two cross-sections. For example, since the diffractive amplitude is not expected to have much isospin dependence, this amplitude should largely cancel in the CEX cross-section, leaving primarily the real amplitudes. The behaviour of the CEX cross-section as a function of energy is then sensitive to the behaviour of the exchange amplitudes. Figure 1 shows a comparison of the CEX and elastic differential cross-sections at an energy slightly higher than that proposed for our experiment. The diffractive pattern is clearly seen in the elastic cross-section, whilst the CEX cross-section falls off smoothly.

Fig. 1. Solid circles are $p\bar{p} + p\bar{p}$ at 790 MeV/c. Open circles are $p\bar{p} + n\bar{n}$ at 730 MeV/c.