A MODEL OF REALITY AS MIND

HENRYK SKOLIMOWSKI
University of Michigan
Ann Arbor, Michigan

I. THE PIGEON METHODOLOGY VS. CREATIVE EVOLUTION

The 20th century philosophy has mummified our understanding of the mind. Instead of exploring the creative and extraordinary aspects of mind, it continually attempted to reduce it to the scope of activities characteristic of pigeons. If you use the pigeon methodology, you are bound to arrive at a pigeonlike understanding. Let me try to trace the historical circumstances that led to the elevation of the pigeon methodology as the tool of universal understanding. One terminological note: when I say "the 20th century philosophy," I mainly mean empiricist-bound, analytically oriented philosophy of the Anglo-Saxon persuasion that dominates our present universities and that has exerted a considerable influence on our thinking all over the globe in the second part of the 20th century.

Karl Popper is right: The road to understanding of the philosophical scene often leads via the understanding of the background knowledge situation. But Popper exaggerates when he maintains that to understand the knowledge situation is to understand the vicissitudes of science.

Now, there were some serious problems with the scientific understanding of the world already in the second half of the 19th century. With the discovery of non-Euclidean geometries, space in the Newtonian sense started to totter. Since the absoluteness of space is one of the basic assumptions of the Newtonian system, to learn that space of the universe does not have to comply to Euclidean geometry was implicitly to admit that the foundations of Newtonian physics were cracking; or at least made uncertain. As the result of absorbing the shock (of the realization that many different geometries are possible, within which we can describe the physical cosmos) conventionalism was born—an ingenious doctrine of Henri Poincaré and Pierre Duhem, who claimed that systems of knowledge we develop do not necessarily
describe reality faithfully, in a one-to-one way; rather the system of knowledge one develops much depends on the system of axioms one accepts to begin with. We have a great deal of liberty which system of axiom to choose, for instance, while developing geometry. This was an ingenious way of resolving the problem of non-Euclidean geometries.

Conventionalism solved one problem, but it opened up a Pandora’s box to many other problems. In particular, it profoundly undermined the very notion of truth as expressed through science; that is to say, it undermined the classical or correspondence notion of truth according to which truth consists of a correspondence between reality R and our description of it D, so that we can claim that science aims at descriptions of reality which are true. Once we admit that the choice of basic concepts and of the conceptual framework is up to us, we, so to speak, slightly unhook the classical notion of truth. I say “slightly unhook” because at the time it appeared that the classical edifice of knowledge, as presented by science, could be saved by artful modifications of the framework.

Then problems started to appear in physics, such as radioactivity and a host of other phenomena which were clearly beyond the domain of the Newtonian paradigm. Those problems were by and large solved by the 20th century physics: Einstein’s theory of relativity, Bohr’s quantum theory, Heisenberg’s principle of uncertainty. While we welcomed those specific extensions of physics, we have not fully realized, let alone absorbed and digested, their consequences as they pertain to our theories of knowledge and of mind. True enough, quite a number of philosophical theories were created as the result of the emergence of quantum theory. However, the main problems, that is, of the relation of scientific truth to reality and concerning the role of the mind in those ever new extensions of physics, have been by-passed, neglected, almost ignored.

Let me be emphatic: since conventionalism emerged (in the second half of the 19th century) we have not come to terms with the notion of truth, and with the notion of reality that science purportedly describes, faithfully, adequately, unequivocally. I discount the enormous logical literature on the subject of truth, including Tarski’s epoch-making formulation of the classical notion of truth (of 1933), for all these works are but elegant formulations and reformulations, showing the prowess and the subtlety of our logical apparatus, but not the new comprehension of reality that science explores and renders in true statements.

While putting forth the proposition that philosophy did not absorb in any depth the consequences of the changes in science we must not forget Karl Popper, who indeed was so struck with the fact that even most entrenched scientific theories (such as Newton’s) finally fall and are falsified that he decided to build a new epistemology on the grounds of this finding. Popper’s distinctive philosophy of science takes the clue from Einstein (as the overthrower of Newton) and claims that all knowledge is tentative. But at the same time it attempts to salvage and justify the superiority of scientific knowledge over all other forms of knowledge. Although Popper’s episte-