CHAPTER IX

The Real and Complex Numbers

IX, §1. ORDERING OF RINGS

Let R be an entire ring. By an ordering of R one means a subset P of R satisfying the following conditions:

ORD 1. For every $x \in R$ we have $x \in P$, or $x = 0$, or $-x \in P$, and these three possibilities are mutually exclusive.

ORD 2. If $x, y \in P$ then $x + y \in P$ and $xy \in P$.

We also say that R is ordered by P, and call P the set of positive elements.

Let us assume that R is ordered by P. Since $1 \neq 0$, and $1 = 1^2 = (-1)^2$ we see that 1 is an element of P, i.e. 1 is positive. By ORD 2 and induction, it follows that $1 + \cdots + 1$ (sum taken n times) is positive. An element $x \in R$ such that $x \neq 0$ and $x \notin P$ is called negative. If x, y are negative elements of R, then xy is positive (because $-x \in P$, $-y \in P$, and hence $(-x)(-y) = xy \in P$). If x is positive and y is negative, then xy is negative, because $-y$ is positive, and hence $x(-y) = -xy$ is positive. For any $x \in R$, $x \neq 0$, we see that x^2 is positive.

Suppose that R is a field. If x is positive and $x \neq 0$ then $xx^{-1} = 1$, and hence by the preceding remarks, it follows that x^{-1} is also positive.

Let R be an arbitrary ordered entire ring again, and let R' be a subring. Let P be the set of positive elements in R, and let $P' = P \cap R$. Then it is clear that P' defines an ordering on R', which is called the induced ordering.

More generally, let R' and R be ordered rings, and let P', P be their sets of positive elements respectively. Let $f: R' \to R$ be an embedding.
(i.e. an injective homomorphism). We shall say that \(f \) is \textbf{order-preserving} if for every \(x \in R' \) such that \(x \in P' \) we have \(f(x) \in P \). This is equivalent to saying that \(f^{-1}(P) = P' \) [where \(f^{-1}(P) \) is the set of all \(x \in R' \) such that \(f(x) \in P \)].

Let \(x, y \in R \). We define \(x < y \) (or \(y > x \)) to mean that \(y - x \in P \). Thus to say that \(x > 0 \) is equivalent to saying that \(x \in P \); and to say that \(x < 0 \) is equivalent to saying that \(x \) is negative, or \(-x \) is positive. One verifies easily the usual relations for inequalities, namely for \(x, y, z \in R \):

\begin{align*}
\text{IN 1. } & x < y \text{ and } y < z \quad \text{implies } x < z. \\
\text{IN 2. } & x < y \text{ and } z > 0 \quad \text{implies } xz < yz. \\
\text{IN 3. } & x < y \quad \text{implies } x + z < y + z.
\end{align*}

If \(R \) is a field, then

\[\text{IN 4. } x < y \text{ and } x, y > 0 \quad \text{implies } 1/y < 1/x. \]

As an example, we shall prove \textbf{IN 2}. We have \(y - x \in P \) and \(z \in P \), so that by \textbf{ORD 2}, \((y - x)z \in P \). But \((y - x)z = yz - xz\), so that by definition, \(xz < yz \). As another example, to prove \textbf{IN 4}, we multiply the inequality \(x < y \) by \(x^{-1} \) and \(y^{-1} \) to find the assertion of \textbf{IN 4}. The others are left as exercises.

If \(x, y \in R \) we define \(x \leq y \) to mean that \(x < y \) or \(x = y \). Then one verifies at once that \textbf{IN 1, 2, 3} hold if we replace throughout the \(<\) sign by \(\leq\). Furthermore, one also verifies at once that if \(x \leq y \) and \(y \leq x \) then \(x = y \).

In the next theorem, we see how an ordering on an entire ring can be extended to an ordering of its quotient field.

Theorem 1.1. \textit{Let} \(R \) \textit{be an entire ring, ordered by} \(P \). \textit{Let} \(K \) \textit{be its quotient field. Let} \(P_K \) \textit{be the set of elements of} \(K \) \textit{which can be written in the form} \(a/b \) \textit{with} \(a, b \in R \), \(b > 0 \) \textit{and} \(a > 0 \). \textit{Then} \(P_K \) \textit{defines an ordering on} \(K \).

Proof. Let \(x \in K \), \(x \neq 0 \). Multiplying a numerator and denominator of \(x \) by \(-1\) if necessary, we can write \(x \) in the form \(x = a/b \) with \(a, b \in R \) and \(b > 0 \). If \(a > 0 \) then \(x \in P_K \). If \(-a > 0 \) then \(-x = -a/b \in P_K \). We cannot have both \(x \) and \(-x \in P_K \), for otherwise, we could write

\[x = a/b \quad \text{and} \quad -x = c/d \]

with \(a, b, c, d \in R \) and \(a, b, c, d > 0 \). Then

\[-a/b = c/d, \]