THE MANUFACTURING OF AIRCRAFT-QUALITY HYDRAULIC TUBING WITH THE Ti-3Al-8V-6Cr-4Mo-4Zr ALLOY*

J. M. Olexa, L. J. Bartlo, H. B. Bomberger

RMI COMPANY
Niles, Ohio

Introduction

The aerospace industry has a need for materials which offer improved performance at less weight. Titanium alloys are attractive for aircraft hydraulic systems because of their high strength-to-weight ratio.

Ti-3Al-2.5V alloy has been used in aircraft hydraulic lines for the past several years. The Ti-6Al-4V alloy has greater strength but processing it into seamless tubing is more complicated and very costly.

Ti-3Al-8V-6Cr-4Mo-4Zr alloy, developed by RMI Company is a heat-treatable metastable beta alloy with certain improvements over existing beta alloys. This alloy offers a good combination of meltability, producibility, formability, tensile properties and fracture toughness with a relatively low density.

The metallurgy of Ti-3Al-8V-6Cr-4Mo-4Zr is similar to other metastable beta titanium alloys. Solution treating retains the more-ductile, body-centered-cubic beta phase and aging treatments can be used to produce a wide range of higher strengths at surprisingly high ductility levels.

* Work performed under the auspices of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Contract No. F33615-70-C-1680.
The main purpose of this program was to make available to the aerospace industries a titanium alloy tubing with higher strength and better forming characteristics than possible with existing titanium alloys.

Tube Production and Evaluation

Production of Tube Shells

Eleven 7-inch diameter, 80-pound billets were produced for this program. The billets were press forged from a 30-inch diameter production heat of Ti-3Al-8V-6Cr-4Mo-4Zr alloy.

All of the billets were machined to 64 RMS with a 0.75-inch radius on the outside lead edge to facilitate entry into the extrusion press. A 1.775-inch diameter center hole was drilled in nine of the billets and a 2.0-inch hole in two of the billets. The billets were then canned with steel and heated in an electric furnace at temperatures ranging from 1700 to 1800°F. All of the extrusion work was done on a 3,850-ton Loewy extrusion press. The tube shell sizes produced were 2-inch O.D. by 0.200-inch wall and 2.625-inch O.D. by 0.375-inch wall.

Following the extrusion, all tube shells were declad in a 5%HF-35%HNO3-60%H2O pickle solution. Sample shells were then air annealed at temperatures ranging from 1500 to 1700°F to establish the optimum annealing temperature for subsequent tube reduction.

Tube Reduction

The seamless tubing produced in this program was manufactured by the tube reducing method. Variables that were investigated in the tube reducing phase of the program included: 1) initial and intermediate thermal treatments, 2) surface quality of tube shells, 3) reduction schedule, 4) percent reduction, 5) feed rate, and 6) die design.

The finished sizes were 0.75-inch O.D. by 0.042-inch wall and 0.540-inch O.D. by 0.030-inch wall. The smallest size tubing, 0.375-inch O.D. by 0.025-inch wall, was cold drawn from 0.540-inch O.D. by 0.030-inch wall.

Testing

Of the three finished tubing sizes, one size, 0.75-inch O.D. by 0.042-inch wall was tested extensively to determine the optimum annealing cycle.