Example 3.1. Cones

We start here with a hyperplane \(\mathbb{P}^{n-1} \subset \mathbb{P}^n \) and a point \(p \in \mathbb{P}^n \) not lying on \(\mathbb{P}^{n-1} \); if we like, we can take coordinates \(Z \) on \(\mathbb{P}^n \) so that \(\mathbb{P}^{n-1} \) is given by \(Z_n = 0 \) and the point \(p = [0, \ldots, 0, 1] \). Let \(X \subset \mathbb{P}^{n-1} \) be any variety. We then define the cone \(\overline{X, p} \) over \(X \) with vertex \(p \) to be the union

\[
\overline{X, p} = \bigcup_{q \in X} \overline{qp}
\]

of the lines joining \(p \) to points of \(X \). (If \(p \) lies on the hyperplane at infinity, \(X, p \) will look like a cylinder rather than a cone; in projective space these are the same thing.) \(\overline{X, p} \) is easily seen to be a variety: if we choose coordinates as earlier and \(X \subset \mathbb{P}^{n-1} \) is the locus of polynomials \(F_a = F_a(Z_0, \ldots, Z_{n-1}) \), the cone \(\overline{X, p} \) will be the locus of the same polynomials \(F_a \) viewed as polynomials in \(Z_0, \ldots, Z_n \).

As a slight generalization of the cone construction, let \(\Lambda \cong \mathbb{P}^k \subset \mathbb{P}^n \) and \(\Psi \cong \mathbb{P}^{n-k-1} \) be complementary linear subspaces (i.e., disjoint and spanning all of \(\mathbb{P}^n \)), and let \(X \subset \Psi \) be any variety. We can then define the cone \(\overline{X, \Lambda} \) over \(X \) with vertex \(\Lambda \) to be the union of the \((k+1) \)-planes \(\overline{q, \Lambda} \) spanned by \(\Lambda \) together with points \(q \in X \). Of course, this construction represents merely an iteration of the preceding one; we can also construct the cone \(\overline{X, \Lambda} \) by taking the cone over \(X \) with vertex a point \(k + 1 \) times.
Exercise 3.2. Let Ψ and $\Lambda \subset \mathbb{P}^n$ be complementary linear subspaces as earlier, and $X \subset \Psi$ and $Y \subset \Lambda$ subvarieties. Show that the union of all lines joining points of X to points of Y is a variety.

In Lecture 8, we will see an analogous way of constructing a variety $\overline{X, Y}$ for any pair of varieties $X, Y \subset \mathbb{P}^n$.

Example 3.3. Quadrics

We can use the concept of cone to give a uniform description of quadric hypersurfaces, at least in case the characteristic of the field K is not 2. To begin with, a quadric hypersurface $Q \subset \mathbb{P}V = \mathbb{P}^n$ is given as the zero locus of a homogeneous quadratic polynomial $Q: V \to K$. Now assume that $\text{char}(K) \neq 2$. The polynomial Q may be thought of as the quadratic form associated to a bilinear form Q_0 on V, that is, we may write

$$Q(v) = Q_0(v, v),$$

where $Q_0: V \times V \to K$ is defined by

$$Q_0(v, w) = \frac{Q(v + w) - Q(v) - Q(w)}{2}.$$

Note that Q_0 is both symmetric and bilinear. There is also associated to Q_0 the corresponding linear map

$$\overline{Q}: V \to V^*$$

given by sending v to the linear form $Q(v, \cdot)$, i.e., by setting

$$\overline{Q}(v)(w) = \overline{Q}(w)(v) = Q_0(v, w).$$

Now, to classify quadrics, note that any quadric Q on a vector space V may be written, in terms of a suitably chosen basis, as

$$Q(X) = X_0^2 + X_1^2 + \cdots + X_r^2.$$

To see this, we choose the basis e_0, \ldots, e_n for V as follows. First, we choose e_0 such that $Q(e_0) = 1$; then we choose $e_1 \in (K e_0)^\perp$ (i.e., such that $Q_0(e_0, e_1) = 0$) such that $Q(e_1) = 1$, and so on, until Q vanishes identically on $(K e_0 + \cdots + K e_k)^\perp$. Finally, we may complete this to a basis with an arbitrary basis e_{k+1}, \ldots, e_n for $(K e_0 + \cdots + K e_k)^\perp$. We say in this case that the quadric Q has rank $k + 1$; note that $k + 1$ is also the rank of the linear map \overline{Q}. By this, a quadric is determined up to projective motion by its rank.

Note that as in Example 1.20, we are led to define a quadric hypersurface in general to be an equivalence class of nonzero homogeneous quadratic polynomials; two such polynomials are equivalent if they differ by multiplication by a scalar. The one additional object that this introduces into the class of quadrics is the double plane, that is, the quadric associated to the square $Q = L^2$ of a linear polynomial L.