The Fourier Integral

XIV, §1. THE SCHWARTZ SPACE

We are going to define a space of functions such that any operation we want to make on improper integrals converges for functions in that space.

Let f be a continuous function on \mathbb{R}. We say that f is rapidly decreasing at infinity if for every integer $m > 0$ the function $|x|^m f(x)$ is bounded. Since $|x|^{m+1} f(x)$ is bounded, it follows that

$$\lim_{|x| \to \infty} |x|^m f(x) = 0$$

for every positive integer m.

We let S be the set of all infinitely differentiable functions f such that f and every one of its derivatives decrease rapidly at infinity. There are such functions, for instance e^{-x^2}.

It is clear that S is a vector space over \mathbb{C}. (We take all functions to be complex valued.) Every function in S is bounded. If $f \in S$, then its derivative Df is also in S, and hence so is the p-th derivative $D^p f$ for every integer $p \geq 0$. We call S the Schwartz space. Since

$$\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$$

converges, it follows that every function in S can be integrated over \mathbb{R}, i.e. the integral

$$\int_{-\infty}^{\infty} f(x) \, dx$$
converges absolutely. For simplicity, from now on we write

$$\int = \int_{-\infty}^{\infty}$$

since we don't deal with any other integrals.

If P is a polynomial, say of degree m, then there is a number $C > 0$ such that for all $|x|$ sufficiently large, we have

$$|P(x)| \leq C|x|^m.$$

Hence if $f \in S$, then Pf also lies in S. If $f, g \in S$ then $fg \in S$. (Obvious.) We see that S is an algebra under ordinary multiplication of functions.

We shall have to consider the function $-ixf(x)$, i.e. multiply by $-ix$. To avoid the x, we may use the notation

$$(Mf)(x) = -ixf(x),$$

and iterate,

$$M^p f(x) = (-ix)^p f(x)$$

for every integer $p \geq 0$.

In order to preserve a certain symmetry in subsequent results, it is convenient to normalize integrals over \mathbb{R} by multiplication by a constant factor, namely $1/\sqrt{2\pi}$. For this purpose, we introduce a notation. We write

$$\int f(x) \, dx_1 = \frac{1}{\sqrt{2\pi}} \int f(x) \, dx.$$

We now define the Fourier transform of a function $f \in S$ by the integral

$$\hat{f}(y) = \int f(x)e^{-ixy} \, dx_1.$$

The integral obviously converges absolutely. But much more:

Theorem 1.1. If $f \in S$, then $\hat{f} \in S$. We have

$$D^p\hat{f} = (M^p f)^\wedge \quad \text{and} \quad (D^p f)^\wedge = (-1)^p M^p \hat{f}.$$