CHAPTER VI
Limits of Functions

For real-valued functions of a real variable, the student already knows what it means for a sequence \(f_1, f_2, \ldots \) of functions to tend uniformly, or to tend simply, to a function \(f \). In this chapter we study these concepts in the general setting of metric spaces. We obtain in this way certain of the 'infinite-dimensional' spaces alluded to in the Introduction, and, thanks to Ascoli's theorem, the compact subsets of these spaces.

6.1. Uniform Convergence

6.1.1. Let \(X \) and \(Y \) be two sets. The mappings of \(X \) into \(Y \) form a set which will henceforth be denoted \(\mathcal{F}(X, Y) \).

6.1.2. Let \(X \) be a set, \(Y \) a metric space. For \(f, g \in \mathcal{F}(X, Y) \), we set
\[
d(f, g) = \sup_{x \in X} d(f(x), g(x)) \in [0, +\infty].
\]

Let us show that \(d \) is a metric (with possibly infinite values) on \(\mathcal{F}(X, Y) \). If \(d(f, g) = 0 \) then, for every \(x \in X \),
\[
d(f(x), g(x)) = 0,
\]
therefore \(f(x) = g(x) \); thus \(f = g \). It is clear that \(d(f, g) = d(g, f) \). Finally, if \(h \in \mathcal{F}(X, Y) \) then, for every \(x \in X \),
\[
d(f(x), h(x)) \leq d(f(x), g(x)) + d(g(x), h(x)) \leq d(f, g) + d(g, h);
\]
this being true for all \(x \in X \), we infer that
\[
d(f, h) \leq d(f, g) + d(g, h).
\]
6.1. Uniform Convergence

This metric is called the **metric of uniform convergence** on \(\mathcal{F}(X, Y) \). The corresponding topology is called the **topology of uniform convergence**.

6.1.3. Let \(f, f_1, f_2, f_3, \ldots \in \mathcal{F}(X, Y) \). To say that \((f_n) \) tends to \(f \) for this topology means that \(\sup_{x \in X} d(f(x), f_n(x)) \to 0 \), in other words: for every \(\varepsilon > 0 \) there exists an \(N \) such that

\[
 n \geq N \Rightarrow d(f_n(x), f(x)) \leq \varepsilon \quad \text{for all } x \in X.
\]

We then also say that the sequence \((f_n) \) **tends uniformly to** \(f \).

6.1.4. Let \(\Lambda \) be a set equipped with a filter base \(\mathcal{B} \). For every \(\lambda \in \Lambda \), let \(f_\lambda \in \mathcal{F}(X, Y) \). Let \(f \in \mathcal{F}(X, Y) \). To say that \(f_\lambda \) tends to \(f \) along \(\mathcal{B} \) for the topology of uniform convergence means: for every \(\varepsilon > 0 \), there exists \(B \in \mathcal{B} \) such that

\[
 \lambda \in B \Rightarrow d(f_\lambda(x), f(x)) \leq \varepsilon \quad \text{for all } x \in X.
\]

We then also say that \(f_\lambda \) tends to \(f \) uniformly along \(\mathcal{B} \).

6.1.5. **Example.** Take \(X = Y = \Lambda = \mathbb{R} \). For filter base \(\mathcal{B} \) on \(\Lambda \), take the set of intervals \((a, +\infty) \). For \(\lambda \in \mathbb{R} \) and \(x \in \mathbb{R} \), set \(f_\lambda(x) = e^{-\lambda(x^2 + 1)} \). Then \(f_\lambda \) tends to 0 uniformly as \(\lambda \to +\infty \) (that is, along \(\mathcal{B} \)). For, let \(\varepsilon > 0 \). There exists \(a \in \mathbb{R} \) such that \(\lambda \geq a \Rightarrow e^{-\lambda} \leq \varepsilon \). Then (provided \(a \geq 0 \)):

\[
 \lambda \geq a \Rightarrow |e^{-\lambda(x^2 + 1)} - 0| = e^{-\lambda(x^2 + 1)} \leq e^{-\lambda} \leq \varepsilon \quad \text{for all } x \in \mathbb{R}.
\]

6.1.6. **Theorem.** Let \(X \) be a set, \(Y \) a complete metric space. Then the metric space \(\mathcal{F}(X, Y) \) is complete.

Let \((f_n) \) be a Cauchy sequence in \(\mathcal{F}(X, Y) \). Let \(x \in X \). Then

\[
 d(f_m(x), f_n(x)) \leq d(f_m, f_n) \to 0 \quad \text{as } m, n \to \infty,
\]

thus \((f_n(x)) \) is a Cauchy sequence in \(Y \), consequently has a limit in \(Y \) which we denote \(f(x) \). We have thus defined a mapping \(f \) of \(X \) into \(Y \).

Let \(\varepsilon > 0 \). There exists an \(N \) such that

\[
 m, n \geq N \Rightarrow d(f_m, f_n) \leq \varepsilon
\]

\[
 \Rightarrow d(f_m(x), f_n(x)) \leq \varepsilon \quad \text{for all } x \in X.
\]

We provisionally fix \(x \in X \) and \(m \geq N \). As \(n \to \infty \), the preceding inequality yields in the limit

\[
 d(f_m(x), f(x)) \leq \varepsilon.
\]

This being true for all \(x \in X \), we have \(d(f_m, f) \leq \varepsilon \). Thus,

\[
 m \geq N \Rightarrow d(f_m, f) \leq \varepsilon.
\]

In other words, \((f_m) \) tends to \(f \) in \(\mathcal{F}(X, Y) \).