§1. \textit{p}-Groups

Let \(p \) be a prime number. Recall that a finite group \(G \) is called a \textit{p-group} if its order \(\text{Card}(G) \) is a power of \(p \).

\textbf{Lemma 1.} Suppose \(G \) is a \textit{p}-group acting on a finite set \(E \), and let \(E^G \) be the subset of elements fixed by \(G \). Then

\[\text{Card}(E^G) \equiv \text{Card}(E) \mod p. \]

Indeed, \(E - E^G \) is the disjoint union of orbits \(Gx \) not reduced to a single point, each having cardinality equal to the index of its stabilizer in \(G \), which is divisible by \(p \).

\textbf{Lemma 2.} If a \textit{p}-group acts on a \textit{p}-group of order \(> 1 \), then the fixed points form a subgroup of order \(> 1 \).

Indeed, the number of fixed points is divisible by \(p \) (lemma 1).

\textbf{Theorem 1.} The center of a \textit{p}-group of order \(> 1 \) has order \(> 1 \).

Apply the preceding lemma, letting the group act on itself by inner automorphisms.

\textbf{Corollary.} A group \(G \) of order \(p^n \) admits a composition series

\[\{1\} = G_n \subset G_{n-1} \subset \cdots \subset G_0 = G \]

with all the \(G_i \) normal in \(G \) (and the \(G_i/G_{i+1} \) cyclic of order \(p \)).
This follows from theorem 1, by induction on \(n \).

Theorem 2. Every linear representation \(\neq 0 \) of a \(p \)-group over a field of characteristic \(p \) contains the unit representation.

Let \(E \) be the representation space. Let \(x \) be a non-zero element of \(E \), \(H \) the subgroup of \(E \) generated by the \(s \cdot x \), \(s \in G \); \(H \) is a finite dimensional vector space over the prime field \(\mathbf{F}_p \). Applying lemma 2 to \(H \) gives the existence of \(y \in H, y \neq 0 \), such that \(s \cdot y = y \) for all \(s \in G \).

Corollary. Let \(G \) be a \(p \)-group, and let \(k \) be a field of characteristic \(p \). The kernel \(I_G \) of the augmentation homomorphism \(k[G] \to k \) is the radical of \(k[G] \), which is a nilpotent ideal.

Indeed, the radical \(r \) of \(kG \) is the intersection of the kernels of the irreducible representations of \(k[G] \) (or of \(G \)—it is the same), and theorem 2 shows that the unit representation is the only irreducible representation of \(G \) over \(k \); hence \(r = I_G \). As \(k[G] \) is a finite dimensional \(k \)-algebra, it is well-known that its radical is nilpotent (cf. Bourbaki, Alg., Chap. VIII, §6, th. 3).

§2. Sylow Subgroups

Theorem 3 (Sylow). Let \(G \) be a group of order \(n = p^mq \), with \(p \) prime and \((p, q) = 1 \). Then there exist subgroups of \(G \) having order \(p^m \) (called Sylow \(p \)-subgroups); they are all conjugate to one another, and every \(p \)-group contained in \(G \) is contained in one of them.

Proof (after G. A. Miller and H. Wielandt). Let \(E \) be the family of all subsets \(X \) of \(G \) having \(p^m \) elements. The group \(G \) operates on \(E \) by translations, and

\[
\text{Card}(E) = \binom{n}{p^m}.
\]

Lemma 3. If \(n = p^mq \), with \((p, q) = 1 \), then

\[
\binom{n}{p^m} \equiv q \mod p.
\]

Indeed, let \(X \) and \(Y \) be indeterminates over a field of characteristic \(p \). Then

\[
(X + Y)^n = (X + Y)^{p^mq} = (X^{p^m} + Y^{p^m})^q = X^{p^mq} + qX^{p^m(a - 1)}Y^{p^m} + \cdots + Y^{p^mq},
\]

and comparing this with the binomial expansion of \((X + Y)^n \) gives the congruence.