§16. DUAL INTEGRAL EQUATIONS

16.1. The Electrified Disc

To motivate this section, we first solve a classical problem of electrostatics. We wish to find the electrostatic potential ϕ created by an isolated thin conducting disc of radius a, whose potential is V. Noting the symmetry of the problem about the axis of the disc and introducing cylindrical polar coordinates $r, \theta, \text{and} z$, we reduce the problem to that of satisfying the equations

$$\phi_{rr} + \frac{1}{r} \phi_r + \phi_{zz} = 0$$

(1)

and

$$\phi(r,0) = V, \quad r < a,$$
$$\phi_z(r,0^+) = \phi_z(r,0^-), \quad r > a.$$

(2)

Applying the Hankel transform of order zero, we easily find from (1) that

$$\phi(k,z) = A(k)e^{-k|z|},$$

(3)

and that the boundary conditions (2) reduce to the "dual integral equations"

$$\int_0^\infty A(k) J_0(kr)kd k = V, \quad r < a,$$

(4)

$$\int_0^\infty kA(k) J_0(kr)kd k = 0, \quad r > a.$$

If we differentiate (4a) with respect to r, we obtain an alternative pair of equations, namely

$$\phi_r(r,0) = -\int_0^\infty A(k) J_1(kr)k^2dk$$
$$= 0, \quad r < a,$$

(5)
§16. Dual integral equations

\[\phi_z(r,0^+) = \int_0^\infty A(k) J_0(kr) k^2 \, dk \]
\[= 0, \ r > a. \tag{6} \]

From (15.21) we see that the function
\[A(k) = C(ka)^{-3/2} J_{1/2}(ka) \tag{7} \]
satisfies both of these equations; furthermore, with this form for \(A(k) \), (15.21) gives
\[\phi_r(r,0) = -\frac{C}{a^2\sqrt{\frac{k}{\pi}}} \frac{h(r-a)}{r} \frac{h(r-a)}{r} \]
and thus
\[\phi(r,0) = -\int_0^\infty \phi_t(t,0) \, dt \]
\[= \begin{cases} \frac{C}{a^2\sqrt{\frac{k}{\pi}}} \sin^{-1}(a/r), & r > a \\ \frac{C}{a^2\sqrt{\frac{k}{\pi}}} & r < a. \end{cases} \tag{9} \]
Finally, this implies \(C = Va^2\sqrt{2/\pi} \), so the solution is
\[\phi(r,z) = \frac{2V}{\pi} \int_0^\infty \sin(ka)e^{-k|z|} k \, J_0(kr) \, dk \ . \tag{10} \]

16.2. Dual Integral Equations of Titchmarsh Type

Equations of the type
\[\int_0^\infty k^{-2\alpha} A(k) J_{\mu}(kx) \, dk = f(x), \ x < a, \tag{11} \]
\[\int_0^\infty k^{-2\beta} A(k) J_{\nu}(kx) \, dk = g(x), \ x > a, \]
where \(f(x) \) and \(g(x) \) are only known over part of the range \(0 < x < \infty \) and \(A(k) \) is sought, occur in certain mixed boundary value problems of which the electrified disc