Chapter 11

Kalman and Wiener Filtering

In this chapter we will present a brief introduction to Kalman and Wiener filtering. The main emphasis is to develop a connection between filtering theory and the Riccati equation.

Let us briefly review the notion of random variable. Consider a probability space (Ω, \mathcal{A}, P) where Ω is the universal set, \mathcal{A} is a σ-algebra, and P is the probability measure. Recall that a random variable x is a measurable function mapping \mathcal{A} into \mathbb{C}. The mean of x is given by

$$E_x = \int_{\Omega} x dP$$

where E denotes the expectation. The variance of x is determined by

$$\sigma_x^2 = E|x - \mu_x|^2 = \int_{\Omega} |x - \mu_x|^2 dP.$$

Moreover, σ_x is the standard deviation for x. Let f and g be two measurable functions of random variables x and y respectively. If x and y are independent, then it follows from probability theory that $Ef(x)g(y) = Ef(x)Eg(y)$.

We say that a sequence $\{y(n)\}_{n=\infty}^{-\infty}$ is a stochastic process or random process if each $y(n)$ is a random variable. Let $L^2(\Omega, \mathcal{A}, P)$ be the Hilbert space of all square integrable random variables with respect to probability measure dP. The inner product is given by $(x, y) = Exy$ for all x and y in $L^2(\Omega, \mathcal{A}, P)$. Throughout we assume that all random variables are in $L^2(\Omega, \mathcal{A}, P)$. Moreover, let $\{u(n)\}$ and $\{v(n)\}$ be random processes where each $u(n)$ and $v(n)$ is an element in $L^2(\Omega, \mathcal{A}, P)$. We say that the random processes $u(n)$ and $v(n)$ are orthogonal, if for all integers i and j, the random variable $u(i)$ is orthogonal to $v(j)$, or equivalently, the inner product $(u(i), v(j)) = Eu(i)v(j) = 0$. In this case, let $y(n)$ be a random process given by $y(n) = u(n) + v(n)$. Then we have

$$(y(i), y(j)) = (u(i), u(j)) + (v(i), v(j)).$$
Finally, if \(u(n) \) and \(v(n) \) are independent random processes and \(u(n) \) or \(v(n) \) has zero mean for all \(n \), then \(u(n) \) and \(v(n) \) are orthogonal. To verify this, simply observe that
\[
(u(i), v(j)) = Eu(i)v(j) = Eu(i)Ev(j) = 0
\]
for all \(i \) and \(j \). Therefore \(u(n) \) and \(v(n) \) are orthogonal.

11.1 Random Vectors

Recall that \(E \) denotes the expectation. In particular, \(Eg \) is the mean of the random variable \(g \). Let \(K \) be the Hilbert space generated by the set of all random variables \(g \) such that \(E|g|^2 \) is finite. Throughout we always assume that all of our random variables are in \(K \). The inner product on \(K \) is determined by the expectation, that is, \((f, g) = Ef\overline{g}\) where \(f \) and \(g \) are in \(K \). We say that \(f \) is a random vector with values in \(\mathbb{C}^k \) if \(f \) is a vector of the form \(f = [f_1 \ f_2 \ \cdots \ f_k]^\text{tr} \) where \(\{f_j\}_1^k \) are all random variables. (Recall that \(\text{tr} \) denotes the transpose.) In this case, \(Ef \) is the vector in \(\mathbb{C}^k \) defined by
\[
Ef = [Ef_1 \ Ef_2 \ \cdots \ Ef_k]^\text{tr}.
\]
The correlation matrix \(R_f \) is the matrix on \(\mathbb{C}^k \) defined by \(R_f = Ef f^* \). To be precise,
\[
R_f = Ef f^* = \begin{pmatrix}
Ef_1 \overline{f}_1 & Ef_1 \overline{f}_2 & \cdots & Ef_1 \overline{f}_k \\
Ef_2 \overline{f}_1 & Ef_2 \overline{f}_2 & \cdots & Ef_2 \overline{f}_k \\
\vdots & \vdots & \ddots & \vdots \\
Ef_k \overline{f}_1 & Ef_k \overline{f}_2 & \cdots & Ef_k \overline{f}_k
\end{pmatrix}.
\] (11.1.1)

Notice that the \(j-k \) entry of \(R_f \) is given by \((R_f)_{jk} = Ef_j \overline{f}_k\). Finally, it is noted that \(R_f \) is the Gram matrix determined by \(\{f_j\}_1^k \). The following result shows that \(R_f \) is positive.

Theorem 11.1.1. Let \(f = [f_1 \ f_2 \ \cdots \ f_k]^\text{tr} \) be a random vector with values in \(\mathbb{C}^k \). Then \(R_f \) is a positive matrix on \(\mathbb{C}^k \). Moreover, \(R_f \) is strictly positive (\(R_f > 0 \)) if and only if the random variables \(\{f_j\}_1^k \) are linearly independent.

Proof. Let \(\alpha = [\alpha_1 \ \alpha_2 \ \cdots \ \alpha_k]^\text{tr} \) be any vector in \(\mathbb{C}^k \). Then
\[
(R_f \alpha, \alpha) = (Ef f^* \alpha, \alpha) = Ef f^* \alpha = E\|f^* \alpha\|^2 = E \left| \sum_{j=1}^k \overline{f}_j \alpha_j \right|^2 \geq 0. \tag{11.1.2}
\]
Hence \((R_f \alpha, \alpha) \geq 0\) for all \(\alpha \) in \(\mathbb{C}^k \). Therefore \(R_f \) is positive.

Equation (11.1.2) shows that
\[
(R_f \alpha, \alpha) = E \left| \sum_{j=1}^k \overline{f}_j \alpha_j \right|^2.
\]