The discrete spectrum in a gap of the continuous one for compact supported perturbations

M.Sh. Birman T. Weidl

1. We start from the traditional problem on the negative spectrum of the Schrödinger operator in \mathbb{R}^d, $d \geq 3$. Let $A = -\Delta$,

$$A(\alpha) = -\Delta - \alpha V, \quad V(x) \geq 0, \quad \alpha > 0,$$

(1)

and $\lambda \leq 0$. By $N_A(\alpha, \lambda)$ we denote the number of eigenvalues of the operator (1) on the left-hand side of the point λ. Then for potentials $V \in L_{d/2}(\mathbb{R}^d)$ we have the well-known asymptotics

$$N_A(\alpha, \lambda) \sim (2\pi)^{-d} \omega_d \alpha^{d/2} \int V^{d/2} dx, \quad \alpha \to \infty,$$

(2)

with ω_d the volume of the unit ball in \mathbb{R}^d. We call potentials $V \in L_{d/2}(\mathbb{R}^d)$ "regular" perturbations of the operator A (cf. [BS1]). The asymptotic (2) do not depend on $\lambda \leq 0$, it's character is determined by the behavior of the symbol $|\xi|^2 - \alpha V(x)$ for large $|\xi|$ only. In [BS1] the asymptotics of $N_A(\alpha, \lambda)$ are discussed precisely for potentials violating the assumption $V \in L_{d/2}(\mathbb{R}^d)$ because of a slow decrease as $|x| \to \infty$ ("non-regular perturbations"). There typically $N_A(\alpha, \lambda) = o(N(\alpha, 0)), \lambda < 0$, is found; the main asymptotical term of $N(\alpha, 0)$ for $\alpha \to \infty$ is given by the symbol of $A(\alpha)$ for small $|\xi|$ (threshold effect). So, for instance, for $V \in L_\infty, V(x) \sim |x|^{-2}(\ln |x|)^{-1/q}, \quad 2q > d, \quad |x| \to \infty$, we have $N(\alpha, 0) \sim c(d)\alpha^q, \quad N(\alpha, \lambda) = O(\alpha^{d/2} \ln \alpha)$, and the latter estimate can be refined. Here we discuss the inverse case, when $V \notin L_{d/2}(\mathbb{R}^d)$ because of local singularities. In detail we assume

$$V \in L_1(\mathbb{R}^d), \quad \text{supp} \ V \subset K_R := \{x : |x| < R\}, \quad V \geq 0.$$

(3)

We call potentials of the form (3) "quasi-regular".

2. For $V \notin L_{d/2}(\mathbb{R}^d)$ the number of eigenvalues $N_A(\alpha, \lambda)$ can show non-powerlike asymptotics. Our second aim is to show that the technical tools developed in [W1], [W2] allow us to consider non-powerlike asymptotics, too. We call a function $f : \mathbb{N} \to \mathbb{R}_+$ a normal estimation function (NEF), if $f \uparrow \infty$ for $n \to \infty$ and if the function f^κ is subadditive for some $\kappa > 0$. We introduce the functionals

$$\Delta_f(\lambda, A) := \lim_{\alpha \to \infty} \sup_{\alpha < A} \alpha^{-1} f(N_A(\alpha; \lambda)), \quad (4)$$

$$\delta_f(\lambda, A) := \lim_{\alpha \to \infty} \inf_{\alpha < A} \alpha^{-1} f(N_A(\alpha; \lambda)). \quad (5)$$
Theorem 1. Let (3) be fullfilled and assume, that for some $\lambda \leq 0$ and for a NEF f $\Delta_f(\lambda, A) < \infty$ holds. Then for every $\mu \leq 0$ we have the equalities

$$\Delta_f(\lambda, A) = \Delta_f(\mu, A), \quad \delta_f(\lambda, A) = \delta_f(\mu, A).$$

(6)

In particular (6) is fullfilled for $\lambda < 0, \mu = 0$; this explains why we call potentials V satisfying assumption (3) "quasi-regular". We remark, that under assumptions of theorem 1 the functionals (4), (5) are determined by the behavior of the symbol of $A(\alpha)$ for large $|\xi|$ only.

3. Further we consider the operator

$$H = -\Delta + p(x), \quad p \in L_\infty(\mathbb{R}^d), \quad d \geq 3,$$

(7)
as unperturbed. The spectrum $\sigma(H)$ may be interrupted by gaps. Let $\Lambda = (\lambda_-, \lambda_+)$ be such a gap. For a large class of potentials V decreasing to zero sufficiently fast for $|x| \to \infty$ the spectrum of the perturbed operator

$$H(\alpha) = H - \alpha V, \quad \alpha > 0, \quad V(x) \geq 0,$$
in the gap Λ is discrete. For $\lambda, \lambda_- \leq \lambda \leq \lambda_+$, we introduce $N_H(\alpha, \lambda)$ - the number of eigenvalues of $H(t)$ which passed the point λ for coupling constant t increasing from 0 to α, (for operator $A(\alpha)$ and $\lambda \leq 0$ the function $N_A(\alpha, \lambda)$ coincides with the function N_A from subsection 1). In [B1] an abstract theorem was presented, which gives the equality of the asymptotical functionals Δ_f, δ_f for $A, \mu < 0$ and $H, \lambda \in \Lambda$, in the case of powerlike estimation functions f. We state here an analogue of this theorem for arbitrary NEF and apply it to the Schrödinger operator. Next we prepare some material required in the corresponding formulations.

4. Let \mathcal{H} be a Hilbert space, $T \in S_\infty(\mathcal{H})$ (i.e. T is a compact operator on \mathcal{H}); and let $\{s_k(T)\}_{k \in \mathbb{N}}$ denote the sequence of singular numbers of the operator T. For some NEF f we introduce the operator classes

$$\Sigma_f = \{T \in S_\infty : |T|_f := \sup_{n \in \mathbb{N}} s_n(T)f(n) < \infty\}.$$n

The class Σ_f is a complete, non-separable space with respect to the quasi-norm $|\cdot|_f$. We denote by Σ^0_f the subspace of operators $T \in \Sigma_f$, for which $s_n(T)f(n) \to 0$. The set of finite rank operators is dense in Σ^0_f. For $T \in \Sigma_f$ we define the functionals

$$\Delta_f(T) := \lim_{n \to \infty} \sup_{n \in \mathbb{N}} s_n(T)f(n), \quad \delta_f(T) := \lim_{n \to \infty} \inf_{n \in \mathbb{N}} s_n(T)f(n).$$n

For $T = T^*$ analogous functionals $\Delta_f^{(\pm)}, \delta_f^{(\pm)}$ can be introduced by the sequences $\{\lambda_n^{(\pm)}(T)\}$, e.g. the sequences of positive eigenvalues of the operator $\pm T$. All six functionals $\Delta_f, \Delta_f^{(\pm)}, \delta_f, \delta_f^{(\pm)}$ are continuous on Σ_f. In fact they are well defined and continuous on the factor space Σ_f/Σ^0_f, too. The class Σ_f is a two-sided ideal in the space of bounded operators on \mathcal{H}. The material of this subsection was developed in [W1]. For similar powerlike ideals see [BS2].