When Berlin University opened in 1810, Prussia stood under French occupation as Napoléon’s *grande armée* swept across Europe. Five years later, the Congress of Vienna sought to restabilise European relations by largely restoring the old order, thereby leaving a major question mark concerning the political constructs that were to constitute the modern nation states within the Continent’s centre. During the ensuing period, culminating in the dramatic events of 1848–49, students and other intellectuals crusaded for democratic reforms while governments cracked down on political agitation, beginning with the Carlsbad decrees of 1819. Hopes ran high in liberal university circles that Prussia, the most powerful and in many respects one of the more progressive of the German states, would take the lead in uniting Germany into a constitutional monarchy along lines similar to the French and British models. But after King Frederick William IV refused to accept the crown offered him by the Frankfurt Parliament in 1849, events soon took a sharp turn toward confrontation, and liberal dreams quickly dissolved after the hopelessness of military resistance became apparent. Fifteen years later, a younger generation would begin to discount the old ideals of the 1848ers in a world shaped by the “new” ethos of Bismarck’s *Realpolitik*, the politics of “blood and iron.”

Back in 1810, the world of higher mathematics, too, was dominated by France. Indeed, a sampling of Europe’s mathematical elite would reveal that more brilliant minds were residing within the walls of Paris than throughout the vast expanse of terrain outside them. The era of the great international academies – when Christian Huygens adorned the Paris Academy and Frederick II preferred having Lagrange rather than the *bieder* Euler in Berlin – was now a thing of the past. The modern nation state, whatever form it might take, carried with it as a matter of course the notion of national scientific communities, and within these mathematics would presumably find its niche alongside its sister disciplines, astronomy and physics. Mathematics had never played a particularly prominent role in the curriculum of the European universities, whereas the Paris Ecole Polytechnique was turning out throngs of first-rate mathematicians as a mere by-product of its curriculum for training engineers. To any informed contemporary observer the prediction that within a half century the German mathematicians would overtake their French counterparts and that the newly founded *Friedrich-Wilhelms-Universität* in Berlin would replace the Ecole Polytechnique as the foremost training ground for young mathematicians would surely have sounded ludicrous.

True, Gauss had already established himself among the luminaries of the age, but his part in elevating mathematics within the German universities had always been modest. By his own choice, Gauss stood outside the mainstream institutional developments that led to a major burst of high-level mathematical activity particularly in the northern German states. Despite enticing offers from Berlin
and the entreaties of his friend Alexander von Humboldt, he resolved to remain in Göttingen, thereby cementing the mathematical reputation of its prestigious Hanoverian university. Gauss’s scientific network, which overlapped with Humboldt’s own, was largely comprised of professional astronomers. Younger mathematicians, including Abel and Jacobi, regarded him as nearly unapproachable and, with the notable exception of Gotthold Eisenstein, he rarely uttered more than the briefest of praise for their work. Those who attended Gauss’s courses in Göttingen gained the pleasure of hearing him explain error theory, least squares, and related mathematical methods of fundamental importance to those working in astronomy and geodesy, but he never offered lectures on the topics that have made his name so famous today (within the vast literature on Gauss, one might begin with [9].)

Practical mathematics of a similar ilk was taught by the professors in Berlin, men with such eminently forgettable names as J.G. Tralles, L. Ideler, E.H. Dirksen, and M. Ohm. Deservedly or not, their reputations died with them as representatives of a style of mathematics whose principal raison d’être resided in service to the natural sciences. Thus, before the late 1820s, no one who yearned to make a name for himself in higher mathematics would have been well advised to study in Berlin (or at any other German university for that matter). If young Carl Gustav Jacob Jacobi did not already know this when he enrolled in 1821, it took him little time to discover that the Berlin mathematicians could offer him nothing to sustain his interests (on Jacobi’s life and work, see [11]). With no apparent regrets, Jacobi