1 Introduction

Polylogarithmic functions are defined by series

$$L_k(z) = \sum_{\nu=1}^{\infty} \frac{z^\nu}{\nu^k}, \quad k \geq 1.$$

Due to equalities $L_k(1) = \zeta(k)$, $k \geq 2$, they play an important role in study of arithmetic properties of Riemann zeta-function $\zeta(s)$ at integer points.

More generally for any rational function $R(s)$ that can be presented as a sum of simple fractions

$$R(s) = \sum_{\ell \in \mathcal{P}} \sum_{k=1}^{d(\ell)} \frac{B_{\ell, k}}{(s + \ell)^k}, \quad B_{\ell, k} \in \mathbb{Q},$$

where \mathcal{P} is a set of distinct positive integers and $d(\ell) \geq 0$, one can find the following equalities:

$$F(z) = \sum_{\nu=0}^{\infty} R(\nu) z^\nu = \sum_{\ell \in \mathcal{P}} \sum_{k=1}^{d(\ell)} B_{\ell, k} \sum_{\nu=0}^{\infty} \frac{z^\nu}{(\nu + \ell)^k} =$$

$$= \sum_{\ell \in \mathcal{P}} \sum_{k=1}^{d(\ell)} B_{\ell, k} z^{-\ell} \sum_{\nu=\ell}^{\infty} \frac{z^\nu}{\nu^k} = \sum_{\ell \in \mathcal{P}} \sum_{k=1}^{d(\ell)} B_{\ell, k} z^{-\ell} \left(L_k(z) - \sum_{\nu=1}^{\ell-1} \frac{z^\nu}{\nu^k} \right).$$

This confirms that the function $F(z)$ is a linear form in 1 and polylogarithms with coefficients in $\mathbb{Q}[1/z]$. It is clear that analogous result can be proved if we put as coefficients of the series $F(z)$ any derivative of $R(s)$ and shift the lower limit of summation on any admissible integer number. The following proposition defines the general construction.
Proposition 1. For any complex \(z \) from the convergence domain of the series

\[
G_r(z) = \frac{(-1)^{r-1}}{(r-1)!} \sum_{v=1}^{\infty} R^{(r-1)}(v-a)z^v
\]

the following identity holds

\[
G_r(z) = A_0(z^{-1}) + \sum_{k=1}^{q} A_k(z^{-1}) L_{k+r-1}(z).
\]

Here \(q = \max_{\ell \in \mathcal{P}} d(\ell) \) and

\[
A_k(x) = \left(\frac{k+r-2}{r-1} \right)^{k} \sum_{\ell \in \mathcal{P}, d(\ell) \geq k} B_{\ell,k} x^{\ell-a}, \quad k = 1, \ldots, q,
\]

\[
A_0(x) = - \sum_{\ell \in \mathcal{P}} \sum_{k=1}^{d(\ell)} \sum_{v=1}^{\ell-a} \left(\frac{k+r-2}{r-1} \right) B_{\ell,k} v^{1-k-r} x^{\ell-a-v}.
\]

Proof. See [9, Proposition 1].

For arithmetic applications of this construction one has to choose the rational function \(R(s) \) in such a way that the number \(G_r(1) \), a linear form in zeta-values, be rather small, and the coefficients \(A_k(1) \in \mathbb{Q} \) have common denominator and magnitude that are not very large. In most cases the choice of the function \(R(s) \) may be described as follows.

Let \(a_j > 1, b_j > 1, j = 1, \ldots, m, \) be integers. Define

\[
R(s) = \gamma \prod_{j=1}^{m} \frac{\Gamma(s+a_j)}{\Gamma(s+b_j)} \in \mathbb{Q}(s),
\]

where \(\gamma \) is a rational number that will be defined later.

With the choice (5) there exist integral representations for \(G_r(z), r \geq 1 \) that are useful in applications for the computation of the asymptotic of the constructed linear forms.

Let \(r \geq 1 \) be integer and \(u \) be a complex number. Write

\[
I_r(u) = \frac{1}{2\pi i} \int_{L} R(s) \left(\frac{\pi}{\sin \pi s} \right)^r e^{\pi ius} ds,
\]

where the path of integration \(L \) goes from \(-i\infty\) to \(i\infty\) and separates the poles of \(\Gamma(s+a_j), 1 \leq j \leq m, \) from points 0, 1, 2, \ldots.

It is easy to check, that the integral (6) converges for \(|\Re u| < r \). In the following proposition we express the function \(G_r(z) \) in terms of integrals (6). For simplicity we assume that \(a = 0 \).

Proposition 2. Let \(r \) be integer, \(r \geq 1 \), and the rational function \(R(s) \) is defined by (1).