CUSTOMER AUTOMATIC THINKING AND STORE CHOICE

Arch G. Woodside, Boston College,
Eva M. Thelen, University of Innsbruck, Austria
Michael Brady, Boston College

ABSTRACT

We offer a two-step model of how customers select brands and shop at stores that they are familiar with: first, they focus on framing a shopping problem/opportunity. Second, they retrieve a few benefit-to-brand (or benefit-to-store) linkages relevant to the frame in their working memories. Such thinking and problem-solving is done automatically usually, without effort. Empirically, we demonstrate models of automatic customer benefit-to-store thoughts that explain store choice and similar models that explain store rejection.

INTRODUCTION

We offer theory, research methods, and findings on models of customer thinking that accurately predict shopping behavior among stores familiar to the customer. While the theory and method apply to both brand and store choice, as well as consumer and industrial customers, our presentation here is focused on the case of store choice. Asking what customers think of a given store may be a mistake. For example, the research method of asking a customer to rate competitors' stores for several store features or shopping benefits includes several questionable assumptions: (1) the customer thinks about a given store; (2) the customer thinks about the store features and benefits used in the ratings; (3) the customer selects and rejects stores based on some decision calculus based on the ratings. Because many customers may rarely retrieve the name of a given marketer's store (or brand) when thinking about a shopping problem, and may not focus their attention on reviewing a memory data-file of benefits-by-stores, collecting and analyzing such ratings data often leads to incorrect conclusions about the image of each competing store. For many customers, a marketer's store may not have an image in the minds of customers. Some of these customers may be aware of the store name if asked an aided-question, but they never retrieve the store name from their memories when thinking about a relevant buying problem. Evidently, managers of the V-8 brand of vegetable drink recognized such a scenario. Thus, the promotional message, "Oh, I could have had a V-8!" When the V-8 brand name is mentioned, many customers report recalling the brand name, but they do not access the brand name when thinking about beverage selections in different consumption situations. Thus, the "Oh [no]," and the past-tense, "could have had," indicate that the consumer is disappointed in herself for not retrieving V-8 from her long-term memory when thinking about choices for consuming a beverage. Using meta-analyses and literature reviews, researchers of ratings-based models of store and brand choice have concluded that the results from empirical models of customer choice based on attribute-benefit ratings are disappointing (see Lindquist 1975; Corstjens and Doyle 1989). In a meta-analysis of 26 studies using multiattribute-attitude models to predict brand choice, Grunert (1988) found low association between attitude and behavior. Several researchers (Cohen 1966; Fazio 1986; Fazio, Powell and Herr 1983; Fazio, Powell and Williams 1989; Holden and Lutz 1992; Woodside and Trappey 1992a, 1992b; Holden 1993) have emphasized the need to measure customer memory-accessibilities of possible solutions (i.e., stores or brands) when focusing attention on a buying or a consuming frame (e.g., a buying problem, such as daily food shopping). Among customers experienced with buying and using some brands in a product category, their first-order brand access from memory has been postulated and found to be a critical determinant of brand choice (Fazio et al. 1989). Grunert (1988) points out that the vast majority of consumer decisions are in fact not based on conscious thinking, what he identifies as "strategic cognitive processing." For buying frames consumers have experienced and have consequently store, alternative solutions (e.g., store names), and benefits-experienced in their memories, asking what associates (e.g., benefits, features, buying frames) evoke which solutions automatically may be useful for modelling both choice and rejection of competing stores. Some top-of-mind, associate-to-store retrievals act as cues relevant to the buying or consuming selection frame. That is, we can model store choice as a function of the specific benefit-to-store evocations. "Consequently, an important priority is to investigate what are the cue constellations that instigate purchase and/or use of a specific brand [store]" (Holden and Lutz 1992, 106). In modelling customer loyalty to a brand or store, Dick and Basu (1994, p. 102) define and emphasize the importance of accessibility by "the ease with which an attitude can be retrieved from memory. The strength of association between an attitude object and its evaluation influences the accessibility of the attitude. Accessibility may be viewed in terms of a continuum, ranging from unretreivable to a well-learned attitude so highly accessible that it will be activated.
automatically upon encountering the attitude object (italics in original).” Here, we emphasize the importance of beginning with having the consumer first encounter (focus on) the evaluation (e.g., benefit) to learn which attitude object (e.g., store) is retrieved automatically. Thus, research to learn benefit-to-object retrievals may extend and deepen the value of research for top-of-mind store and brand names for different categories, for example, supermarkets, department stores, mail order firms, soft drinks, brands of cereals. This proposal provides an operational step to achieve customer loyalty as proposed by Jacoby and Chestnut (1978, p. 32), "If brand loyalty is ever to be managed, not just measured, it will have to be elaborated in a much more detailed description of cognitive activities" [micro understanding of choice versus macro models of behavior]. Learning benefit-to-store retrievals and their linkages to store choice provides such detailed description.

PROPOSITIONS FOR MODELLING CUSTOMER BENEFIT-TO-STORE RETRIEVALS

Several propositions follow from benefit-to-store retrieval models of store choice. Consider three competing supermarkets. Each store promotes itself to offer the lowest prices (a common occurrence) but each differs in the constellation of benefits promoted. For example, Alpha's strategy includes the attempt to position the store in customers' minds as the "most convenient location" (MCL), Beta and Delta stores do not include MCL as part of their positioning strategies.

P1: A customer can access a store name automatically from memory, when asked for the store name that first comes-to-mind for a specific bit-of-information, such as a benefit. For example, when "best quality of meat" (BM) is mentioned, Günther retrieves supermarket Alpha. Note that BM is part of Alpha's promotional message in positioning this store in the minds of customers; thus a match between a benefit-to-store retrieval and positioning strategy does not always occur.

P2: For periodic shopping needs (e.g., daily or stocking-up food shopping) a customer can access a store name automatically as her or his primary store, that is, the store shopped most frequently. In store research in the United States, Fulgoni and Eskin (1983) have reported that most shoppers change their primary supermarket store one or more times each year. To reduce possible bias of benefit-to-store retrievals on a customers naming their primary store, momentarily clearing the focus of customers on naming stores is advised when collecting data on primary store choice, additional stores shopped, and information on stores customers would not shop. Asking demographic and open-ended questions on benefits sought might be done between asking questions on benefit-to-store retrievals and store choice and rejection questions.

P3: Some customer's benefit-to-store retrievals are associated with their primary store choice. Tigert (1983) refers to "hot buttons" when he emphasized this points: a customer views her primary store as superior on at least one benefit she thinks about when shopping; a relatively small number of benefits are likely to drive the store choice process (also, see Alpert 1979).

P4: Each competing store has a unique configuration of a few dominant, associate-to-store retrievals linked with its selection as primary store. A consumer may be unable to retrieve any store name for the benefits not relevant for her store selections, that is, some attitudes are not well-learned because (1) the consumer focuses attention rarely on these linkages or (2) a supermarket strategy does not include attempts to create such linkages.

P5: Some benefit-to-store retrievals are not associated to customers' primary store choices. For example, note that best-quality-of-merchandise (BQM) does not result in a store retrieval for any of the three shoppers, even though BQM is used in the positioning strategy by Beta. Customers should be coached to report that, "none comes-to-mind" is sometimes the most appropriate answer when researching benefit-to-store retrievals. Response latency measures may indicate weak linkage for a benefit-to-store response, for example, an immediate naming of a store for lowest prices (LP) may indicate a stronger LP-store attitude than the same response given after a 4 second delay (see Fazio 1989).

P6: A customer has associate-to-store retrievals not only for their primary store but also for competing stores; a customer shops sometimes at one or more of these competing stores. Additional open-ended questions can be used to confirm that he buys bakery products from Beta. P7: For some customers benefit-to-store retrievals for negatively-worded evaluations are linked to store rejection. David Wing, managing director of Retail Advisors in Seattle, points out, "A business owner has to listen to what the customers aren't saying. The most important person in the store is someone who didn't buy anything" (quoted in Dauten, 1996). "He means that there is crucial information to be gathered from customers who walk by a store or who come in but walk out without making a purchase" (Dauten 1996; also see Spiggle and Sewall 1987). P8: store retrievals for negative evaluated attributes sometimes contribute to predicting primary store choice of a given store. Thus, seemingly unrelated regression analysis of store choice may be useful for learning how customers' negatively-worded benefit-to-store retrievals of competing stores help gain primary customers for another store (see Woodside and Trappey 1992b). P9: different benefit-to-store retrievals and primary stores sometimes occur for different problem frames. Two problem frames are posed to Günther, Normaleneinlauf (i.e., the German word for food shopping for daily-needs) and Vorratseinkauf (shopping for stocking-up the pantry). Thus,