

Synopsis:
As our earlier Compendium makes clear, mathematicians have been fascinated by the decimal expansion (and expansions in other bases) of π since the time of Archimedes — what sort of number is π? Questions such as whether π is rational or not, or algebraic or not, were settled in the 18th and 19th century, respectively.

But one question, originally raised by Borel in 1909, remains unanswered even today: whether or not π is normal. A real constant is said to be normal base 10, or 10-normal, if every m-long string of digits appears in the decimal expansion of π with limiting frequency $1/10^m$ (with a similar definition for a general base b), and is said to be absolutely normal if it is b-normal for all integer bases b simultaneously.

In this highly readable paper, Wagon introduces the question of the normality of π in the context of the recently discovered quadratically convergent algorithms. He also presents a statistical analysis of the digits of π provided by Yasamusa Kanada, who had, at the time, just computed π to 10,000,000-digit precision.

Keywords: Computation, General Audience, Normality