Chapter 1

Monoidal categories and functors

The study of monoidal categories originated in the work of Jean Bénabou [Ben] and Saunders Mac Lane [ML1]. In this chapter, we review the basics of the theory of monoidal categories.

1.1 Categories and functors

1.1.1 Categories

A category \(\mathcal{C} \) consists of the following data:

- a class \(\text{Ob}(\mathcal{C}) \), whose elements are called objects of \(\mathcal{C} \);
- for any \(X, Y \in \text{Ob}(\mathcal{C}) \), a set \(\text{Hom}_\mathcal{C}(X, Y) \), whose elements are called morphisms from \(X \) to \(Y \) and represented by arrows \(X \to Y \);
- for any \(X, Y, Z \in \text{Ob}(\mathcal{C}) \), a map
 \[
 \circ : \text{Hom}_\mathcal{C}(Y, Z) \times \text{Hom}_\mathcal{C}(X, Y) \to \text{Hom}_\mathcal{C}(X, Z)
 \]
 called composition. The image of a pair \((g, f) \) under this map is denoted \(g \circ f \) or just \(gf \);
- for every \(X \in \text{Ob}(\mathcal{C}) \), a morphism \(\text{id}_X \in \text{Hom}_\mathcal{C}(X, X) \), called the identity of \(X \).

It is required that the composition is associative and unitary in the following sense:

\[
(h \circ g) \circ f = h \circ (g \circ f) \quad \text{and} \quad f \circ \text{id}_X = f = \text{id}_Y \circ f
\]

for all morphisms \(f : X \to Y, g : Y \to Z, h : Z \to T \) with \(X, Y, Z, T \in \text{Ob}(\mathcal{C}) \).
Given a morphism $f : X \to Y$ in a category \mathcal{C}, the object X is called the source and the object Y the target of f. Two morphisms g, f in \mathcal{C} are composable if the source of g coincides with the target of f. For $X \in \text{Ob}(\mathcal{C})$, the set $\text{Hom}_\mathcal{C}(X, X)$ is denoted by $\text{End}_\mathcal{C}(X)$, and its elements are called endomorphisms of X. The set $\text{End}_\mathcal{C}(X)$ is a monoid with product $gf = g \circ f$ for any $f, g \in \text{End}_\mathcal{C}(X)$ and unit id_X.

A morphism $f : X \to Y$ in \mathcal{C} is an isomorphism if there exists a morphism $g : Y \to X$ in \mathcal{C} such that $gf = \text{id}_X$ and $fg = \text{id}_Y$. Such a g is uniquely determined by f, is called the inverse of f and denoted f^{-1}. Two objects X, Y of \mathcal{C} are isomorphic if there exists an isomorphism $X \to Y$. Isomorphism of objects is an equivalence relation on $\text{Ob}(\mathcal{C})$ denoted \simeq.

The opposite of a category \mathcal{C} is the category \mathcal{C}^{op} defined by $\text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$ and $\text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y) = \text{Hom}_{\mathcal{C}}(Y, X)$ for all $X, Y \in \text{Ob}(\mathcal{C})$ with composition \circ^{op} defined by $g \circ^{\text{op}} f = fg$.

A subcategory of a category \mathcal{C} is a category \mathcal{D} such that every object of \mathcal{D} is an object of \mathcal{C}, for any $X, Y \in \text{Ob}(\mathcal{D})$, the set $\text{Hom}_\mathcal{D}(X, Y)$ is a subset of $\text{Hom}_\mathcal{C}(X, Y)$, the composition in \mathcal{D} is the restriction of that in \mathcal{C}, and the identity morphisms in \mathcal{D} are the same as in \mathcal{C}. A subcategory \mathcal{D} of \mathcal{C} is full if $\text{Hom}_\mathcal{D}(X, Y) = \text{Hom}_\mathcal{C}(X, Y)$ for all $X, Y \in \text{Ob}(\mathcal{D})$.

1.1.2 Example

Sets and maps between them form a category denoted Set. Finite sets and maps between them form a full subcategory of Set.

1.1.3 Example

Left modules over the ring k and k-linear homomorphisms (with the usual composition) form a category denoted Mod_k.

1.1.4 Example

Given a set G, we define a category G_k as follows. The objects of G_k are elements of G. By definition, $\text{Hom}_{G_k}(g, g) = k$ for all $g \in G$ and $\text{Hom}_{G_k}(g, h) = \{0\} \subset k$ for any distinct $g, h \in G$. The composition of morphisms in G_k is induced by multiplication in k. The identity of an object $g \in G$ is $\text{id}_g = 1_k$.

1.1.5 Functors and natural transformations

Functors are morphisms of categories and natural transformations are morphisms of functors. More precisely, a functor $F : \mathcal{C} \to \mathcal{D}$ from a category \mathcal{C} to a category \mathcal{D} assigns to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D} and to each morphism $f : X \to Y$ in \mathcal{C} a morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} so that

$$F(gf) = F(g)F(f) \quad \text{and} \quad F(\text{id}_X) = \text{id}_{F(X)}$$