Chapter One: Area and Dissection

Section 1. Qualitative and Quantitative Treatments of Area

We shall assume that the readers are familiar with simple terms such as triangles, squares, rectangles and parallelograms, simple concepts such as congruence, similarity, convexity and parallelism, and simple results such as the sum of the angles of a triangle being 180°. On the other hand, we will make precise the assumptions about area.

Our focus is on the area of polygons. The first assumption is called the existence of area, which states that every polygon has a non-negative area. This may seem unnecessarily legalistic, but it provides us with a context. With that in mind, we will safely ignore it from now on.

The next two assumptions allow us to give a qualitative treatment of area.

The Principle of Conservation of Area.
If a plane figure is dissected into several pieces, then its area is equal to the sum of the areas of the pieces.

The Principle of Preservation of Area.
If a plane figure is transferred to another location by rigid motion, then its area is unchanged.

In other words, congruent figures have equal area.

We start with a simple example. When a parallelogram is divided by either diagonal into two triangles, they have equal area because they are congruent.

Let E be a point on the side AB of a parallelogram $ABCD$. Is the area of triangle CDE greater than, equal to or less than one half the area of $ABCD$?

![Figure 1.1](image-url)

© Springer International Publishing AG 2018
A. Liu, S.M.A.R.T. Circle Minicourses, Springer Texts in Education, https://doi.org/10.1007/978-3-319-71743-2_1
Draw a line through E parallel to AD, cutting CD at F, as shown in Figure 1.1. Then EF divides $ABCD$ into two parallelograms $AEFD$ and $BEFC$. Now triangle DEF has half the area of $AEFD$ while triangle CEF has half the area of $BEFC$. By the Principle of Conservation of area, triangle CDE has half the area of $ABCD$.

P is a point inside a square $ABCD$. Which if either have greater total area, triangles PAD and PCB, or triangles PAB and PCD?

![Figure 1.2](image)

Draw a line through P parallel to AD, cutting AB at E and CD at F, as shown in Figure 1.2. Then PAD has half the area of $ADFE$ and PCB has half the area of $BCFE$. Together they have half the area of $ABCD$, and their total area is equal to the total area of PAB and PCD.

P and R are points inside a rectangle $ABCD$ such that RA cuts PB at Q and RD cuts PC at S, as shown in Figure 1.3. Prove that the total area of triangles PAQ and PDS is equal to the total area of triangles RBQ and RCS.

![Figure 1.3](image)

When triangles ABQ and CDS are added to both side, the augmented total area of each side is now half the area of $ABCD$. Hence the total area of each side before augmentation must also be the same.