Estimation of VARMA Models

In this chapter, maximum likelihood estimation of the coefficients of a VARMA model is considered. Before we can proceed to the actual estimation, a unique set of parameters must be specified. In this context, the problem of nonuniqueness of a VARMA representation becomes important. This identification problem, that is, the problem of identifying a unique structure among many equivalent ones, is treated in Section 12.1. In Section 12.2, the Gaussian likelihood function of a VARMA model is considered. A numerical algorithm for maximizing it and, thus, for computing the actual estimates is discussed in Section 12.3. The asymptotic properties of the ML estimators are the subject of Section 12.4. Forecasting with estimated processes and impulse response analysis are dealt with in Sections 12.5 and 12.6, respectively.

12.1 The Identification Problem

12.1.1 Nonuniqueness of VARMA Representations

In the previous chapter, we have considered K-dimensional, stationary processes y_t with VARMA(p,q) representations

$$y_t - A_1 y_{t-1} + \cdots + A_p y_{t-p} + u_t + M_1 u_{t-1} + \cdots + M_q u_{t-q}. \tag{12.1.1}$$

Because the mean term is of no importance for the presently considered problem, we have set it to zero. Therefore, no intercept term appears in (12.1.1). This model can be written in lag operator notation as

$$A(L)y_t - M(L)u_t, \tag{12.1.2}$$

where $A(L) := I_K - A_1 L - \cdots - A_p L^p$ and $M(L) := I_K + M_1 L + \cdots + M_q L^q$. Assuming that the VARMA representation is stable and invertible, the well-defined process described by the model (12.1.1) or (12.1.2) is given by
\[
y_t - \sum_{i=0}^{\infty} \Phi_i u_{t-i} - \Phi(L) u_t - A(L)^{-1} M(L) u_t.
\]

In practice, it is sometimes useful to consider a slightly more general type of VARMA model by attaching nonidentity coefficient matrices to \(y_t\) and \(u_t\), that is, one may want to consider representations of the type

\[
A_0 y_t = A_1 y_{t-1} + \cdots + A_p y_{t-p} + M_0 v_t + M_1 v_{t-1} + \cdots + M_q v_{t-q},
\]

where \(v_t\) is a suitable white noise process. Such a form may be suggested by subject matter theory which may imply instantaneous effects of some variables on other variables. It will also turn out to be useful in finding unique structures for VARMA models. By the specification (12.1.3) we mean the well-defined process

\[
y_t = (A_0 - A_1 L - \cdots - A_p L^p)^{-1} (M_0 + M_1 L + \cdots + M_q L^q) v_t.
\]

Such a process has a standard VARMA \((p, q)\) representation with identity coefficient matrices attached to the instantaneous \(y_t\) and \(u_t\) if \(A_0\) and \(M_0\) are nonsingular. To see this, we premultiply (12.1.3) by \(A_0^{-1}\) and define \(u_t = A_0^{-1} M_0 v_t\) which gives

\[
y_t = A_0^{-1} A_1 y_{t-1} + \cdots + A_0^{-1} A_p y_{t-p} + u_t + A_0^{-1} M_1 M_0^{-1} A_0 u_{t-1} + \cdots
\]

\[\quad + A_0^{-1} M_q M_0^{-1} A_0 u_{t-q}.
\]

Redefining the matrices appropriately, this, of course, is a representation of the type (12.1.1) with identity coefficient matrices at lag zero which describes the same process as (12.1.3). The assumption that both \(A_0\) and \(M_0\) are nonsingular does not entail any loss of generality, as long as none of the components of \(y_t\) can be written as a linear combination of the other components. We call a stable and invertible representation as in (12.1.1) a VARMA representation in standard form or a standard VARMA representation to distinguish it from representations with nonidentity matrices at lag zero as in (12.1.3). This discussion shows that VARMA representations are not unique, that is, a given process \(y_t\) can be written in standard form or in nonstandard form by premultiplying by any nonsingular \((K \times K)\) matrix. We have encountered a similar problem in dealing with finite order structural VAR processes in Chapter 9. However, once we consider standard reduced form VAR models only, we have unique representations. This property is in sharp contrast to the presently considered VARMA case, where, in general, a standard form is not a unique representation, as we will see shortly.

It may be useful at this stage to emphasize what we mean by equivalent representations of a process. Generally, two representations of a process \(y_t\) are equivalent if they give rise to the same realizations (except on a set of measure zero) and, thus, to the same multivariate distributions of any finite subcollection of variables \(y_t, y_{t+1}, \ldots, y_{t+h}\), for arbitrary integers \(t\) and \(h\). Of course, this specification just says that equivalent representations really