Chapter 5

Elasticities. Elasticities of substitution

5.1 \(\text{El}_x f(x) = \frac{x}{f(x)} f'(x) = \frac{x}{y} \frac{dy}{dx} = \frac{d(\ln y)}{d(\ln x)} \)

5.2

\[\begin{align*}
\text{Marshall’s rule: } & \text{To find the elasticity of } y = f(x) \text{ w.r.t. } x \text{ at the point } P \text{ in the figure, first}\n& \text{draw the tangent to the curve at } P. \text{ Measure}\n& \text{the distance } A_y \text{ from } P \text{ to the point where the}\n& \text{tangent intersects the } y\text{-axis, and the distance}\n& A_x \text{ from } P \text{ to where the tangent intersects the}\n& x\text{-axis. Then } \text{El}_x f(x) = \pm \frac{A_y}{A_x}.\n\end{align*} \]

5.3

- If \(|\text{El}_x f(x)| > 1\), then \(f \) is elastic at \(x \).
- If \(|\text{El}_x f(x)| = 1\), then \(f \) is unitary elastic at \(x \).
- If \(|\text{El}_x f(x)| < 1\), then \(f \) is inelastic at \(x \).
- If \(|\text{El}_x f(x)| = 0\), then \(f \) is completely inelastic at \(x \).

5.4 \(\text{El}_x (f(x)g(x)) = \text{El}_x f(x) + \text{El}_x g(x) \)

5.5 \(\text{El}_x \left(\frac{f(x)}{g(x)} \right) = \text{El}_x f(x) - \text{El}_x g(x) \)

El\(_x f(x) \), the \textit{elasticity} of \(y = f(x) \) w.r.t. \(x \), is approximately the percentage change in \(f(x) \) corresponding to a one per cent increase in \(x \).

Illustration of Marshall’s rule.

Marshall’s rule. The distances are measured positive. Choose the plus sign if the curve is increasing at \(P \), the minus sign in the opposite case.

Terminology used by many economists.

General rules for calculating elasticities.
5.7 \(\text{El}_f (f(x) \pm g(x)) = \frac{f(x) \text{El}_f f(x) \pm g(x) \text{El}_f g(x)}{f(x) \pm g(x)} \) General rules for calculating elasticities.

5.8 \(\text{El}_f g(x) = \text{El}_u f(u) \text{El}_x u, \quad u = g(x) \)

If \(y = f(x) \) has an inverse function \(x = g(y) = f^{-1}(y) \), then, with \(y_0 = f(x_0) \),

5.9 \(\text{El}_y x = \frac{y \frac{dx}{dy}}{x} \), i.e. \(\text{El}_y g(y_0)) = \frac{1}{\text{El}_f f(x_0)} \)

The elasticity of the inverse function.

5.10 \(\text{El}_x A = 0, \quad \text{El}_x x^a = a, \quad \text{El}_x e^x = x. \)

(\(A \) and \(a \) are constants, \(A \neq 0 \).) Special rules for elasticities.

5.11 \(\text{El}_x \sin x = \frac{x}{\cos x}, \quad \text{El}_x \cos x = -\frac{x}{\sin x} \cos x \)

5.12 \(\text{El}_x \tan x = \frac{x}{\sin x \cos x}, \quad \text{El}_x \cot x = -\frac{x}{\sin x} \sin x \cos x \)

5.13 \(\text{El}_x \ln x = \frac{1}{\ln x}, \quad \text{El}_x \log_a x = \frac{1}{\ln x} \)

The partial elasticity of \(f(x) = f(x_1, \ldots, x_n) \) w.r.t. \(x_i, i = 1, \ldots, n \).

5.14 \(\text{El}_i f(x) = \text{El}_{x_i} f(x) = \frac{x_i}{f(x)} \frac{\partial f(x)}{\partial x_i} \)

If \(z = F(x_1, \ldots, x_n) \) and \(x_i = f_i(t_1, \ldots, t_m) \) for \(i = 1, \ldots, n \), then for all \(j = 1, \ldots, m \),

5.15 \(\text{El}_{t_j} z = \sum_{i=1}^{n} \text{El}_i F(x_1, \ldots, x_n) \text{El}_{t_j} x_i \)

The chain rule for elasticities.

The directional elasticity of \(f \) at \(x \), in the direction of \(x/\|x\| \), is

5.16 \(\text{El}_a f(x) = \frac{\|x\|}{f(x)} f'_a(x) = \frac{1}{f(x)} \nabla f(x) \cdot x \)

\(\text{El}_a f(x) \) is approximately the percentage change in \(f(x) \) corresponding to a one percent increase in each component of \(x \). (See (4.27)–(4.28) for \(f'_a(x) \).)

5.17 \(\text{El}_a f(x) = \sum_{i=1}^{n} \text{El}_i f(x), \quad a = \frac{x}{\|x\|} \)

A useful fact (the passus equation).

The marginal rate of substitution (MRS) of \(y \) for \(x \) is

5.18 \(R_{yx} = \frac{f'_1(x, y)}{f'_2(x, y)}, \quad f(x, y) = c \)

\(R_{yx} \) is approximately how much one must add of \(y \) per unit of \(x \) removed to stay on the same level curve for \(f \).