In the following chapter we want to consider the magnetic properties of nanoscaled wires. They are characterized by a large aspect ratio of their length to their width and height. We will distinguish between wires with a width in the sub-micrometer regime on the one hand and those which are built up by only single atoms on the other hand. It is obvious that such systems exhibit a pronounced anisotropic behavior due to its shape.

13.1 Wires Exhibiting a Width in the Sub-Micrometer Regime

Let us assume that the height and the width of the wire is in the sub-micrometer regime whereas the length is significantly larger. This implies a high aspect ratio. One example of such a system is presented in Fig. 13.1. The sample is a thin Fe film of 13 nm thickness which has been transformed into a periodic nanoscaled wire array by an anisotropic plasma etching process after film deposition. The Fe film was grown on an Al₂O₃(11̅02) substrate onto a 150 nm thick Nb buffer layer which has a (001)-orientation as can be derived from the three-dimensional epitaxial relationship between niobium and sapphire. Finally, an array of well separated Fe wires on top of a Nb buffer is obtained. The measurement confirms the regularity of the Fe nanoscaled wires having a width of 150 nm and a periodicity of 300 nm as well as that the wires are completely separated from each other. The stripes have a sinusoidal shape.

Due to the shape anisotropy the magnetization is expected to be oriented along the wire. The upper part of Fig. 13.2 shows the remanent Kerr signal \(\theta_{rem} \) normalized to the Kerr signal at saturation \(\theta_{sat} \) as a function of the angle of rotation \(\chi \) about the surface normal of the Fe film which yields information about the squareness of the hysteresis loops. The signal \(\theta_K \) represents the rotation of linearly polarized monochromatic light due to the reflection on a
ferromagnetic surface. This experimental technique is known as the magneto-optical Kerr effect (MOKE). According to Fig. 13.2 the remanent Kerr signal is significantly reduced at certain angles χ without reaching zero-values signifying the hard axis orientations (around 90° and 270°). For the corresponding angles χ along the easy axis orientations (0° and 180°) the ratio $\theta_K^{\text{rem}} / \theta_K^{\text{sat}}$

Fig. 13.1. Surface morphology of a periodic array of Fe nanowires on a Nb/sapphire substrate imaged with atomic force microscopy AFM. (Reprinted from [40] with permission of IOP)

Fig. 13.2. The upper panel shows results from hysteresis loop measurements at different angles of rotation χ for the nanowire array as measured at remanence normalized to the Kerr rotation as measured at saturation. The lower panel depicts the results of MOKE hysteresis loop measurements as a function of the angle of rotation of the unpatterned sample where θ_K^{rem} as measured at remanence is normalized to θ_K^{sat} as measured at saturation and plotted as a function of the angle of rotation χ which is a measure of the magnetic anisotropy. (Adapted from [40] with permission of IOP)