Support d’une équation d’Itô avec sauts en dimension 1

Thomas Simon*

Mathematical Institute, 24-29 Saint Giles,
Oxford OX1 3LB, ROYAUME-UNI
e-mail : simon@maths.ox.ac.uk

Résumé

On décrit le support d’une équation d’Itô uni-dimensionnelle conduite par un processus de Lévy, sans conditions sur ce dernier et sous des hypothèses minimales sur les coefficients. L’idée principale est un contrôle trajectoriel de l’équation au moyen d’équations de Marcus associées, qui dépendent continûment du processus porteur. La question de la continuité reste cependant ouverte pour l’équation d’Itô elle-même.

Mots-clés : Équation d’Itô - Équation de Marcus - Processus de Lévy - Support.

MSC 2000 : 60H10

1 Introduction

Cet article constitue une généralisation des résultats de [14], où nous avions donné en dimension 1 un théorème de support pour une certaine classe (introduite par Marcus) d’équations d’Itô non-linéaires portées par un processus de Lévy. Ces équations de Marcus sautent suivant leurs champs de vecteurs de façon “intrinsèque”, ce qui permet en particulier de montrer [4] qu’elle dépendent continûment (pour la topologie localement uniforme) du processus porteur en dimension 1. Dans [14], le théorème de support est alors obtenu assez facilement en transférant un résultat de petites déviations obtenu dans [15]. Ici, nous nous intéressons au même problème pour des équations d’Itô classiques du type

\[X_t = x + \int_0^t a(X_s) \, ds + \int_0^t b(X_s) \, dZ_s, \]

(1)
toujours en dimension 1. Ces équations s’écrit donc plus simplement que les équations de Marcus, mais sautent aussi de façon bien plus abrupte et n’ont pas leur agréable interprétation géométrique. De plus, hormis le cas facile où Z est à variations finies, nous ne sommes pas arrivés à démontrer si, oui ou non, X solution de l’équation (1) est une fonctionnelle continue de Z pour une topologie adaptée au problème du support, question que nous avions posée en remarque finale (b) dans l’article [14].

En revanche, nous montrons que le point de vue évoqué en remarque finale (c) du même article, point de vue consistant à voir une équation d’Itô comme la perturbation d’une équation de Marcus associée, peut s’avérer fructueux pour ce genre de problèmes. Cette perturbation est en fait essentiellement la variation quadratique de Z, quantité dont on montre au paragraphe 2 que l’on peut la contrôler en norme uniforme en même temps que Z lui-même. Au paragraphe 3, nous comparons une équation de Marcus perturbée par cette variation quadratique à des équations de Marcus bi- ou tri-dimensionnelles, suivant que

*auteur soutenu par le réseau TMR "Stochastic Analysis".

© Springer-Verlag Berlin Heidelberg 2003
b(X_t) est proche ou non de 0. Ces dernières sont introduites de façon que leurs champs de vecteurs commutent, et l'on peut alors invoquer les théorèmes de continuité de la partie IV de [3]. Au paragraphe 4, nous appliquons les résultats précédents à un théorème de support pour l'équation ci-dessus (dans le cas où Z est à variations infinies, l'autre cas étant déjà traité dans [13]). Ce théorème fait intervenir les squeuelettes

$$\Phi_t = x + \int_0^t a_s(\Phi_s) \, ds + \int_0^t b_s(\Phi_s) \, \psi_s \, ds + \sum_{t_p \leq t} b_t(\Phi_{t_p}) \, z_p,$$

où $\psi : \mathbb{R}^+ \to \mathbb{R}$ est une fonction continue quelconque et (t_p, z_p) une suite d'instants et de tailles de sauts admissibles. Ces squeuelettes sont donc plus logiquement reliés à l'équation (1) que dans le Théorème B de [13], où nous avions besoin de surcroît d'une hypothèse supplémentaire sur la mesure de sauts de Z.

Précisons que les équations d'Ito que nous étudions dans cet article sont non seulement différentes, mais plus générales que les équations de Marcus. Sans rien changer aux preuves on peut en effet ajouter à l'équation ci-dessus un terme quelconque non-linéaire du type

$$\sum_{0 < s \leq t} c(X_s, \Delta Z_s),$$

et obtenir le théorème de support correspondant.

Et remarquons pour finir cette introduction que contrairement à [13], la méthode employée ici n’utilise pas le caractère markovien du processus X, mais seulement les accroissements indépendants de Z. Ceci laisse à penser qu’une méthode analogue pourrait également être utilisée pour des équations avec sauts dont les solutions ne sont plus markoviennes, comme dans [11] et [8].

2 Compléments sur les petites déviations d’un processus de Lévy

Le but de cette partie est d’obtenir un contrôle simultané des trajectoires et des variations quadratiques d’un processus de Lévy réel à variations infinies. Ceci affine, en dimension 1, un résultat sur les petites déviations de tels processus obtenu dans [15]. C’est par ailleurs le seul résultat vraiment probabiliste démontré dans cet article, tout le reste (ou presque) étant une analyse trajectorielle.

Soit donc $(Z_t, t \geq 0)$ un processus de Lévy réel issu de 0. Rappelons sa décomposition de Lévy-Ito : pour tout $t \geq 0$,

$$Z_t = \alpha t + \beta W_t + \int_0^t \int_{|z| \leq 1} z \mu(ds, dz) + \int_0^t \int_{|z| > 1} z \mu(ds, dz),$$

où $\alpha, \beta \in \mathbb{R}$, W est un mouvement brownien réel issu de 0, ν une mesure positive sur $\mathbb{R} - \{0\}$ vérifiant

$$\int_{\mathbb{R}} \frac{|z|^2}{|z|^2 + 1} \nu(dz) < \infty,$$

μ la mesure de Poisson sur $\mathbb{R}^+ \times \mathbb{R}$ d’intensité $ds \otimes \nu(dz)$, et $\bar{\mu} = \mu - ds \otimes \nu$ la mesure compensée. Nous dirons que Z est de type I si ses trajectoires sont p.s à variations finies sur tout compact, c’est à dire si $\beta = 0$ et si

$$\int_{\mathbb{R}} |z| \nu(dz) < \infty.$$